References

WEYL-MECHANICAL SYSTEMS ON GENERALIZED (PARA)-KÄHLER SPACE FORM


[1] P. Gilkey and S. Nikčević, (Para)-Kähler Weyl structures, (2012), 1-14, arXiv:1204.0724.

[2] M. de León and P. R. Rodrigues, Generalized Classical Mechanics and Field Theory, North-Holland Mathematics Studies, 112, North-Holland, Amsterdam, 2000.

[3] H. de Vries, Understanding Relativistic Quantum Field Theory, The Hamiltonian and Lagrangian Densities, Chapter 22 (2009).

[4] M. Tekkoyun, On para-Euler-Lagrange and para-Hamiltonian equations, Physics Letters A 340(1-4) (2005), 7-11.
DOI: https://doi.org/10.1016/j.physleta.2005.03.055

[5] M. Tekkoyun and M. Sari, Bi-para-mechanical systems on the bi-Lagrangian manifold, Physica B: Condensed Matter 405(10) (2010), 2390-2393.
DOI: https://doi.org/10.1016/j.physb.2010.02.052

[6] M. Tekkoyun and Y. Yayli, Mechanical systems on generalized-quaternionic Kähler manifolds, International Journal of Geometric Methods in Modern Physics 8(7) (2011), 1419.1431.
DOI: https://doi.org/10.1142/S0219887811005804

[7] P. Gilkey and S. Nikčević, 4-Dimensional (para)-Kähler-Weyl structures, (2012), 1-8, arXiv:1210.6769.

[8] G. Ganchev and V. Mihova, Warped product Kähler manifolds and Bochner-Kähler metrics, Journal of Geometry and Physics 58(7) (2008), 803-824.
DOI: https://doi.org/10.1016/j.geomphys.2008.02.002

[9] C. L. Bejan and N. C. Chiriac, Weyl structures on almost paracontact manifolds, International Journal of Geometric Methods in Modern Physics 10(1) (2013); Article 1220019.
DOI: https://doi.org/10.1142/S0219887812200198

[10] D. Cherney, E. Latini and A. Waldron, (p,q)-form Kähler electromagnetism, (2009), 1-5, arXiv:0901.3788.

[11] X. Sun and Y. Wang, Geometric Schrödinger-airy flows on Kähler manifolds, (2012), 1-35, arXiv:1203.0549.

[12] D. S. Freed, Special Kähler manifolds, Communications in Mathematical Physics 203(1) (1999), 31-52.
DOI: https://doi.org/10.1007/s002200050604

[13] N. Tyurin, Hamiltonian dynamics on the moduli space of half weighted Bohr-Sommerfeld Lagrangian subcycles of a fixed volume, (2000), 1-11, arXiv:math/0010104.

[14] S. L. Lyakhovich and A. A. Sharapov, Kähler polarization and Wick quantization of Hamiltonian systems subject to second-class constraints, Modern Physics Letters A 17(2) (2002), 121-129.
DOI: https://doi.org/10.1142/S0217732302006230

[15] Z. Rongye, Newtonian mechanics on Kähler manifold, Applied Mathematics and Mechanics 17(8) (1996), 751-764.
DOI: https://doi.org/10.1007/BF00189563

[16] Z. Kasap and M. Tekkoyun, Mechanical systems on almost para/pseudo-Kähler- Weyl manifolds, International Journal of Geometric Methods in Modern Physics 10(5) (2013); Article 1350008.
DOI: https://doi.org/10.1142/S0219887813500084

[17] M. Z. Petrović and L. S. Velimirović, A new type of generalized para-Kähler spaces and holomorphically projective transformations, Bulletin of the Iranian Mathematical Society 45(4) (2019), 1021-1043.
DOI: https://doi.org/10.1007/s41980-018-0182-y

[18] M. Z. Petrović, Holomorphically projective mappings between generalized hyperbolic Kähler spaces, Journal of Mathematical Analysis and Applications 447(1) (2017), 435-451.
DOI: https://doi.org/10.1016/j.jmaa.2016.10.016

[19] Josef Mikeš, Elena Stepanova and Alena Vanžurová, Differential Geometry of Special Mappings, Palacký University, Olomouc, 2015.

[20] G. B. Folland, Weyl manifolds, Journal of Differential Geometry 4(2) (1970), 145-153.
DOI: https://doi.org/10.4310/jdg/1214429379

[21] P. Gilkey and S. Nikčević, Kähler-Weyl manifolds of dimension, 4 (2011), 1-10, arXiv:1109.4532.

[22] L. Kadosh, Topics in Weyl Geometry, Dissertational, University of California, 1996.

[23] H. Weyl, Space-Time-Matter, Dover Publications 1922, Translated from the 4th German edition by H. Brose, London: Methuen, Reprint New York, Dover, 1952.

[24] M. Z. Petrović, Generalized para-Kähler spaces in Eisenhart’s sense admitting a holomorphically projective mapping, Filomat 33(13) (2019), 4001-4012.
DOI: https://doi.org/10.2298/FIL1913001P

[25] M. Hazewinkel, Encyclopaedia of Mathematics: Fibonacci Method-H, Kluwer Academic Publishers, 1989.
DOI: https://doi.org/10.1007/978-94-009-5997-2

[26] P. Gilkey and S. Nikčević, Kähler and para-Kähler curvature Weyl manifolds, (2010), 1-11, arXiv:1011.4844.

[27] J. Klein, Escapes variationnels et mécanique, Annales de l’Institut Fourier 12 (1962), 1-24.
DOI: https://doi.org/10.5802/aif.120

[28] M. Brozos-Vazquez, P. Gilkey and S. Nikčević, Geometric realizations of affine Kähler curvature models, Results in Mathematics 59(3) (2011), 507-521.
DOI: https://doi.org/10.1007/s00025-011-0105-1

[29] R. Miron, D. Hrimiuc, H. Shimada and S. V. Sabau, The Geometry of Hamilton and Lagrange Spaces, Kluwer Academic Publishers, FTPH, 118 (2001).

[30] M. de Leon and P. R. Rodrigues, Methods of Differential Geometry in Analytical Mechanics, North-Holland Math. St., 152, Elsevier Sc. Pub. Com. Inc., Amsterdam, 1989.

[31] B. Hornberger, Electric and Magnetic Forces in Lagrangian and Hamiltonian Formalism, Lecture Notes, 2001.