References

OPTIMAL CONTROL APPLIED TO HEPATITIS C THERAPY CONSIDERING IMMUNE SYSTEM


[1] R. Avendaño, L. Esteva, J. A. Flores, J. L. Fuentes Allen, J. Gómez and Je. López-Estrada, A mathematical model for the dynamics of hepatitis C, Journal of Theoretical Medicine 4(2) (2002), 109-118.

[2] S. Banerjee, R. Keval and S. Gakkhar, Modeling the dynamics of hepatitis C virus with combined antiviral drug therapy: Interferon and Ribavirin, Mathematical Biosciences 245(2) (2013) 235-248.
DOI: https://doi.org/10.1016/j.mbs.2013.07.005

[3] S. Crotty, C. E. Cameron and R. Andino, RNA virus error catastrophe: Direct molecular test by using ribavirin, Proc. Natl. Acad. Sci. USA 98(12) (2001), 6895-6900.
DOI: https://doi.org/10.1073/pnas.111085598

[4] S. P. Chakrabarty, Optimal efficacy of ribavirin in the treatment of hepatitis C, Optimal Control Applications and Methods 30(6) (2009), 594-600.
DOI: https://doi.org/10.1002/oca.894

[5] S. P. Chakrabarty and H. R. Joshi, Optimally controlled treatment strategy using interferon and ribavirin for hepatitis C, Journal of Biological Systems 17(1) (2009) 97-110.
DOI: https://doi.org/10.1142/S0218339009002727

[6] N. M. Dixit, J. E. Layden-Almer, T. J. Layden and A. S. Perelson, Modelling how ribavirin improves interferon response rates in hepatitis C virus infection, Nature 432 (2004), 922-924.
DOI: https://doi.org/10.1038/nature03153

[7] H. Dahari, A. Lo, R. M. Ribeiro and A. S. Perelson, Modelling hepatitis C virus dynamics: Liver regeneration and critical drug efficacy, Journal of Theoretical Biology 247(2) (2007), 371-381.
DOI: https://doi.org/10.1016/j.jtbi.2007.03.006

[8] H. Dahari, R. M. Ribeiro and A. S. Perelson, Triphasic decline of hepatitis C virus RNA during antiviral therapy, Hepatology 46(1) (2007), 16-21.
DOI: https://doi.org/10.1002/hep.21657

[9] J. Emilio, Hepatitis C Virus Disease: Immunobiology and Clinical Applications, Springer, 2008.

[10] W. Fleming and R. Rishel, Deterministic and Stochastic Optimal Controls, Springer-Verlag, 1975.

[11] L. D. Lukes, Differential Equations: Classical to Controlled, Vol. 162 of Mathematics in Science and Engineering, Academic Press, New York, 1982.

[12] S. Lenhart and J. T. Workman, Optimal Control Applied to Biological Models, Mathematical and Computational Biology Series, Chapman and Hall/CRC, 2007.

[13] N. K. Martin, A. B. Pitcher, P. Vickerman, A. Vassal and M. Hickman, Optimal control of hepatitis C antiviral treatment programme delivery for prevention amongst a population of injecting drug users, PLoS ONE 6(8) (2011), e22309.
DOI: https://doi.org/10.1371/journal.pone.0022309

[14] J. M. Ntaganda, M. S. D. Haggar and B. Mampassi, Fuzzy logic strategy for solving an optimal control problem of therapeutic hepatitis C virus dynamics, Open Journal of Applied Sciences 5(9) (2015), 527-541.
DOI: https://doi.org/10.4236/ojapps.2015.59051

[15] A. U. Neumann, N. P Lam, H. Dahari, D. R. Gretch, T. E. Wiley, T. J. Layden and A. S. Perelson, Hepatitis C viral dynamics in vivo and the antiviral efficacy of interferon-alpha therapy, Science 282(5386) (1998), 103-107.
DOI: http://dx.doi.org/10.1126/science.282.5386.103

[16] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The mathematical theory of optimal process, Translated from de Russian by K. N. Trirogoff; Edited by L. W. Neustadt, Interscience Publisher, John Wiley and Sons, Inc., New York, London, 1962.

[17] H. R. Roson, Clinical practice. Cronic hepatitis C infection, The New England Journal of Medicine 364(25) (2011), 2429-2438.
DOI: http://dx.doi.org/10.1056/NEJMcp1006613

[18] World Health Organization, Hepatitis C-global prevalence (update), World Health Org. Weekly Epidemiol. Rec. 75 (2000), 18-19.

[19] S. Zeuzem and E. Hermann, Dynamics of hepatitis C virus infection, Annals of Hepatology 1(2) (2002), 56-63.