References

A BROADBAND ELECTROMAGNETIC DIRECT AND INVERSE SCATTERING OF NONLINEAR LOSSY TARGETS


[1] S. Abarbanel, D. Gottlieb and J. S. Hesthaven, Long time behavior of the perfectly matched layer equations in computational electromagnetics, J. Comput. Sci. 17(1-4) (2002), 405-422.

[2] E. Barouch and S. A. Orszag, Source optimization in optical lithography, Studies in Applied Mathematics 128(2) (2012), 144-158.

[3] J. P. Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Computational Physics 114(2) (1994), 185-200.

[4] E. M. Lifshitz, The theory of molecular attractive forces between solids, Soviet Physics 2 (1956), 73-83.

[5] F. Pinto, Engine cycle of an optically controlled vacuum energy transducer, Physical Review B 60 (1999), 14740-14755.

[6] Toru Uno, Yiwei He and Saburo Adachi, Perfectly matched layer absorbing boundary condition for dispersive medium, IEEE Microwave and Guided Wave Letters 7(9) (1997), 264-266.

[7] M. Born and E. Wolf, Principles of Optics, Sixth Edition, Pergamon Press, 1987.

[8] A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 2nd Edition, Artech House, 2000.

[9] M. S. Yeung and E. Barouch, Three-dimensional mask transmission simulation using a single integral equation method, Proc. SPIE 3334 (1998), 704-713.

[10] D. Maystre, Integral Methods, in Electromagnetic Theory of Gratings, R. Petit Ed., Springer Verlag, 1980.

[11] E. Barouch, S. L. Knodle and S. A. Orszag, Properties of broadband non-linear lossy materials employed in the electromagnetic inverse scattering during the microchip processing, Modelling and Numerical Simulation of Material Science 3 (2013), 1-7.