References

ON STEPHAN'S CONJECTURES CONCERNING PASCAL TRIANGLE MODULO 2 AND THEIR POLYNOMIAL GENERALIZATION


[1] W. B. Everett, Number of binomial coefficients divisible by a fixed power of a prime, INTEGERS 8 (2008), #A11.

[2] J. Glaisher, On the residue of a binomial-theorem coefficient with respect to a prime modulus, Quart. J. Pure and Appl. Math. 30 (1899), 150-156.

[3] A. Granville, Zaphod Beeblebrox’s brain and the fifty-ninth row of Pascal’s triangle, Amer. Math. Monthly 99(4) (1992), 318-331; 104(9) (1997), 848-851.

[4] D. Hewgill, A relationship between Pascal’s triangle and Fermat numbers, Fib. Quart. 15 (1977), 183-184.

[5] J. G. Huard, B. K. Spearman and K. S. Williams, Pascal’s triangle (mod 8), Europ. J. Combin. 19(1) (1998), 45-62.

[6] A. Karttunen, On Pascal’s triangle modulo 2 in Fibonacci representation, Fib. Quart. 42(1) (2004), 38-46.

[7] S. Northshield, Sums across Pascal’s triangle modulo 2, Congressus Numerantium 200 (2010), 35-52.

[8] E. S. Rowland, The number of nonzero binomial coefficients modulo arXiv: 1001.1783v2 (2010).

[9] V. S. Shevelev, On a combinatorial-analytical identity and some analogs of Euler formula for zeta-function, Deposed in VINITI, no. 3481-B91 (1991), 1-6 (in Russian).

[10] V. Shevelev, Binomial coefficient predictors, arXiv: 0907.3302v4 (2009), J. Integer Seq. 14 (2011), Article 11.2.8.

[11] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences (http://oeis.org.).

[12] E. Trost, Primzahlen, Birkhäuser-Verlag, 1953.