References

ATOMISTIC AND SRIM APPROACH TO THE PROPERTIES OF POINT DEFECTS IN SINGLE CRYSTALLINE MO


[1] F. W. Wiffen, Defects and Defect Clusters in bee Metals and their Alloys, NBS Washington, D.C., 1973, p. 176.

[2] T. H. Webster, B. L. Eyre and F. A. Terry, Irradiation embrittlement and creep in fuel cladding and core components, British Nuclear Energy Society (1973), 61.

[3] J. M. Steichen, Tensile properties of neutron irradiated TZM and tungsten, Journal of Nuclear Materials 60(1) (1976) 13-19.
DOI: https://doi.org/10.1016/0022-3115(76)90112-4

[4] B. L. Cox and F. W. Wiffen, The ductility in bending of Molybdenum alloys irradiated between 425 and 1000°C, Journal of Nuclear Materials 85/86(Part 2) (1979), 901-905.
DOI: https://doi.org/10.1016/0022-3115(79)90375-1

[5] M. Tanaka, K. Fukaya, K. Fukai and K. Shiraishi, Radiation Hardening in Neutron-Irradiated Molybdenum and its Alloys, Effects of Radiation on Materials: Tenth Conference, ASTM STP 725 (1981), 247-268.

[6] G. H. Kinchin and R. S. Pease, The displacement of atoms in solids, Reports on Progress in Physics 18(1) (1955), 1-51.
DOI: https://doi.org/10.1088/0034-4885/18/1/301

[7] Benjamin Beeler, Chaitanya Deo, Michael Baskes and Maria Okuniewski, Atomistic investigations of intrinsic and extrinsic point defects in bcc uranium, Effects of Radiation on Nuclear Materials: STP 1547 25 (2012), 231-247.

[8] Benjamin Beelera, Shenyang Hu, Yongfeng Zhang and Yipeng Gao, A improved equation of state for Xe gas bubbles in U-Mo fuels, Journal of Nuclear Materials 530 (2020); Article 151961.
DOI: https://doi.org/10.1016/j.jnucmat.2019.151961

[9] Wenhua Zhang, Di Yun and Wenbo Liu, Xenon diffusion mechanism and Xenon bubble nucleation and growth behaviors in Molybdenum via molecular dynamics simulations, Materials 12(15) (2019); Article 2354.
DOI: https://doi.org/10.3390/ma12152354

[10] D. A. Terentyev, L. Malerba and M. Hou, Dimensionality of interstitial cluster motion in bcc-Fe, Physical Review B 75 (2007); Article 104108.
DOI: https://doi.org/10.1103/PhysRevB.75.104108

[11] Benjamin Beeler, Michael W. D. Cooper, Zhi-Gang Mei, Daniel Schwen and Yongfeng Zhang, Radiation driven diffusion in U-Mo, Journal of Nuclear Materials 543 (2021); Article 152568.
DOI: https://doi.org/10.1016/j.jnucmat.2020.152568

[12] K. Nordlund, S. J. Zinkle, A. E. Sand, F. Granberg, R. S. Averback, R. E. Stoller, Tomoaki Suzudo, L. Malerba, F. Banhart, William, J. Weber, Francois Willaime, Sergei L. Dudarev and David Simeone, Primary radiation damage: A review of current understanding and models, Journal of Nuclear Materials 512(15) (2018), 450-479.
DOI: https://doi.org/10.1016/j.jnucmat.2018.10.027

[13] Hongxing Xiao, Chongsheng Long, Xiaofeng Tian and Shujian Li, Atomistic simulations of the small Xenon bubble behavior in U-Mo alloy, Materials and Design 74 (2015), 55-60.
DOI: https://doi.org/10.1016/j.matdes.2015.02.005

[14] X. W. Zhou, R. A. Johnson and H. N. G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Physical Review B 69(14) (2004); Article 144113.
DOI: https://doi.org/10.1103/physrevb.69.144113

[15] S. V. Starikov, L. N. Kolotova, A. Y. Kuksin, D. E. Smirnova and V. I. Tseplyaev, Atomistic simulation of cubic and tetragonal phases of U-Mo alloy: Structure and thermodynamic properties, Journal of Nuclear Materials 499 (2018), 451-463.
DOI: https://doi.org/10.1016/j.jnucmat.2017.11.047

[16] G. J. Ackland and R. Thetford, An improved n-body semi-empirical model for body-centred cubic transition metals, Philosophical Magazine A 56(1) (1987), 15-30.
DOI: https://doi.org/10.1080/01418618708204464

[17] H. Park, M. R. Fellinger, T. J. Lenosky, W. W. Tipton, D. R. Trinkle, S. P. Rudin, C. Woodward, J. W. Wilkins and R. G. Hennig, Ab initio based empirical potential used to study the mechanical properties of Molybdenum, Physical Review B 85(21) (2012); Article 214121.
DOI: https://doi.org/10.1103/physrevb.85.214121

[18] C. Chen, Z. Deng, R. Tran, H. Tang, I.-H. Chu and S. P. Ong, Accurate force field for Molybdenum by machine learning large materials data, Physical Review Materials 1(4) (2017); Article 043603. DOI: https://doi.org/10.1103/physrevmaterials.1.043603

[19] B. Beeler, B. Good, S. Rashkeev, C. Deo, M. Baskes and M. Okuniewski, First principles calculations for defects in U, Journal of Physics: Condensed Matter 22(50) (2010); Article 505703.
DOI: https://doi.org/10.1088/0953-8984/22/50/505703

[20] Seungwu Han, Luis A. Zepeda-Ruiz, Graeme J. Ackland, Roberto Car and David J. Srolovitz, Self-interstitials in V and Mo, Physical Review B 66(22) (2002); Article 220101.
DOI: https://doi.org/10.1103/PhysRevB.66.220101

[21] J. F. Ziegler, J. P. Biersack and U. Littmart, The Stopping and Range of Ions in Solids, Volume 1, Pergammon, New York, 1985. http://www.srim.org (SRIM is freely available at: The current SRIM version is 2003.20.

[22] Asmat Ullah, Qingyu Wang, Iftikhar Ahmad and Muhammad Usman, Irradiation effects on Nd and W doped aluminum nitride thin films, Physica B: Condensed Matter 586 (2020); Article 412086.
DOI: https://doi.org/10.1016/j.physb.2020.412086

[23] M. Ghorbani-Asl, Silvan Kretschmer, Douglas E. Spearot and Arkady V. Krasheninnikov, Two-dimensional under ion irradiation: From controlled defect production to electronic structure engineering, 2D Materials 4(2) (2017); Article 025078.
DOI: https://doi.org/10.1088/2053-1583/aa6b17

[24] W. G. Wolfer, Textbook on Fundamental Properties of Defects in Metals, Ktech Corporation, Albuquerque, NM, USA; Sandia National Laboratories, Livermore, CA, USA.

[25] Asmat Ullah, Muhammad Usman, Wang Qingyu, Iftikhar Ahmad, Rabia Yasmin Khosa and Muhammad Maqbool, Response of structural and optical properties against proton irradiation in AlN:Tm thin films, Radiation Physics and Chemistry 180 (2021); Article 109234.
DOI: https://doi.org/10.1016/j.radphyschem.2020.109234