References

NO GAS DOPING OF ZNO FILMS USING IR HOT-WIRE IN CATALYTIC REACTION-ASSISTED CHEMICAL VAPOR DEPOSITION


[1] Ü. Özgür, Y. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho and H. Morkoç, A comprehensive review of ZnO materials and devices, Journal of Applied Physics 98(4) (2005); Article 041301.
DOI: https://doi.org/10.1063/1.1992666

[2] B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck and A. V. Rodina, Bound exciton and donor-acceptor pair recombinations in ZnO, Physica Status Solidi (b) 241(2) (2004), 231-260.
DOI: https://doi.org/10.1002/pssb.200301962

[3] K. Yasui, N. Yamaguchi, E. Nagatomi, S. Satomoto and T. Kato, Electrical properties of zinc oxide thin films deposited using high-energy generated from a catalytic reaction on platinum nanoparticles, MRS Symp. Pro. 1494 (2013), 127-132.
DOI: https://doi.org/10.1557/opl.2013.240

[4] A. Tsukazaki, M. Kubota, A. Ohtomo, T. Onuma, K. Ohtani, H. Ohno, S. F. Chichibu and M. Kawasaki, Blue light-emitting diode based on ZnO, Japanese Journal of Applied Physics, Part 2 44(20-23) (2005), L643-L645.
DOI: https://doi.org/10.1143/JJAP.44.L643

[5] S. Y. Myong, S. J. Baik, C. H. Lee, W. Y. Cho, and K. S. Lim, Extremely transparent and conductive ZnO:Al thin films prepared by photo-assisted metalorganic chemical vapor deposition (photo-MOCVD) using as new doping material, Japanese Journal of Applied Physics, Part 2 36(8B) (1997), L1078-L1081.
DOI: https://doi.org/10.1143/JJAP.36.L1078

[6] B. M. Ataev, A. M. Bagamadova, A. M. Djabrailov, V. V. Mamedov and R. A. Rabadanov, Highly conductive and transparent Ga-doped epitaxial ZnO films on sapphire by CVD, Thin Solid Films 260(1) (1995), 19-20.
DOI: https://doi.org/10.1016/0040-6090(94)09485-3

[7] V. Assuncao, E. Fortunato, A. Marques, H. Aguas, I. Ferreira, M. E. V. Costa and R. Martins, Influence of the deposition pressure on the properties of transparent and conductive ZnO:Ga thin-film produced by r.f. sputtering at room temperature, Thin Solid Films 427(1-2) (2003), 401-405.
DOI: https://doi.org/10.1016/S0040-6090(02)01184-7

[8] Z. F. Liu, F. K. Shan, Y. X. Li, B. C. Shin and Y. S. Yu, Epitaxial growth and properties of Ga-doped ZnO films grown by pulsed laser deposition, Journal of Crystal Growth 259(1-2) (2003), 130-136.
DOI: https://doi.org/10.1016/j.jcrysgro.2003.07.007

[9] H. J. Ko, Y. F. Chen, S. K. Hong, H. Wenisch, T. Yao and D. C. Look, Ga-doped ZnO films grown on GaN templates by plasma-assisted molecular-beam epitaxy, Applied Physics Letters 77(23) (2000), 3761-3763.
DOI: https://doi.org/10.1063/1.1331089

[10] T. Minami, H. Nanto and S. Takata, Highly conductive and transparent aluminum doped zinc oxide thin films prepared by RF magnetron sputtering, Japanese Journal of Applied Physics 23 Part 2(5) (1984), L280-L282.
DOI: https://doi.org/10.1143/JJAP.23.L280

[11] X.-L. Guo, H. Tabata and T. Kawai, Epitaxial growth and optoelectronic properties of nitrogen-doped ZnO films on substrate, Journal of Crystal Growth 237(239) (2002), 544-547.
DOI: https://doi.org/10.1016/S0022-0248(01)01974-1

[12] Y. Yan, S. B. Zhang and S. T. Pantelides, Control of doping by impurity chemical potentials: Predictions for p-type ZnO, Physical Review Letters 86(25) (2001), 5723-5726.
DOI: https://doi.org/10.1103/PhysRevLett.86.5723

[13] X. Li, Y. Yan, T. A. Gessert, C. DeHart, C. L. Perkins, D. Young and T. J. Coutts, p-Type ZnO thin films formed by CVD reaction of diethylzinc and NO gas, Electrochemical Solid-State Letters 6(4) (2003), C56-C58.
DOI: https://doi.org/10.1149/1.1554292

[14] X. Li, Y. Yan, T. A. Gessert, C. L. Perkins, D. Young, C. DeHart, M. Young and T. J. Coutts, Chemical vapor deposition-formed p-type ZnO thin films, Journal of Vacuum Science & Technology A 21(4) (2003), 1342-1346.
DOI: https://doi.org/10.1116/1.1584036

[15] K. Yasui, M. Morioka, S. Kanauchi, Y. Ohashi, T. Kato and Y. Tamayama, Effects of gas addition on the properties of ZnO films grown by catalytic reaction-assisted chemical vapor deposition, Journal of Vacuum Science & Technology A 33(6) (2015); Article 061519.
DOI: https://doi.org/10.1116/1.4935334

[16] H. Umemoto, H. Kusanagi, K. Nishimura and M. Ushijima, Detection of radical species produced by catalytic decomposition of and their mixtures on heated Ir surfaces, Thin Solid Films 517(12) (2009), 3446-3448.
DOI: https://doi.org/10.1016/j.tsf.2009.01.020

[17] M. Petravic, P. N. K. Deenapanray, V. A. Coleman, C. Jagadish K.-J. Kim, B. Kim, K. Koike, S. Sasa, M. Inoue and M. Yano, Chemical states of nitrogen in ZnO studied by near-edge X-ray absorption fine structure and core-level photoemission spectroscopies, Surface Science 600(7) (2006), L81-L85.
DOI: https://doi.org/10.1016/j.susc.2006.01.015

[18] E.-C. Lee, Y.-S. Kim, Y.-G. Jin and K. J. Chang, Compensation mechanism for N acceptors in ZnO, Physical Review B 64(8) (2001); Article 085120.
DOI: https://doi.org/10.1103/PhysRevB.64.085120