References

MICRO AND MACRO HARDNESS CORRELATION FOR HIGH SPEED STEEL HSS WITH MC AND CARBIDE PRECIPITATION, USED TO PRODUCE LAMINATION ROLLS


[1] S. H. Avner, Introducción a la metalurgia física, Segunda Edición McGrawhill, México D.F., 1994.

[2] J. Colnet, E. Pirard, J. Lecomte-Beckers, P. Boeraeve and R. Ghfiri, Quantitative description of and carbides in high speed steel rolls, Tchoufang – Proceedings of MSMF-3 International Conference, Brno, Czech Republic (2001), 710-717.

[3] Keun Chul Hwang, Sunghak Lee and Hui Choon Lee, Effects of alloying elements on microstructure and fracture properties of cast high speed steel rolls: Part I: Microstructural analysis, Materials Science and Engineering A, Elsevier Science SA 254(1-2) (1998), 282-295.

[4] K. K. Chang, J. Park, L. Sunghak and K. Y. Chan, Effects of alloying elements on microstructure, hardness, and fracture toughness of centrifugally cast high-speed steel rolls, Metallurgical and Materials Transactions 36A (1) (2005), 87-97.
Doi:10.1007/s11661-005-0141-0

[5] Dae Jin Ha, Effects of alloying elements on microstructure, hardness, wear resistance, and surface roughness of centrifugally cast high-speed steel rolls, Metallurgical and Materials Transactions A, Korea 40A (2009), 2568-2577.
DOI: 10.1007/s11661-009-0006-z

[6] C. K. Kim, D.-G. Lee and S. Lee, Correlation of microstructure and fracture properties of five centrifugal cast high speed steel rolls, Materials Science and Technology 23(9) (2007), 1065-1074.
Doi:10.1179/174328407X213170

[7] Kim Chang Kyu; Park, Il Jong, Jae Hwa Ryu and Sunghak Lee, Correlation of microstructure and thermal-fatigue properties of centrifugally cast high-speed steel rolls, Metallurgical and Materials Transactions A 35(2) (2004), 481-492.
Doi:10.1007/s11661-004-0359-2

[8] L. De Colnet, E. Pirard, J. Tchoufang Tchuindjang, J. Lecomte Beckers, R. Gfhiri, P. Boeraeve and S. Cescotto, Quantitative description of and carbides in high speed steel rolls, University of Liège, Liège, Belgium, In proceedings of the MSMF-3 international conference held in Brno, Krakowic (2001), 710-717.

[9] J. W. Park, H. C. H. Lee and S. Lee, Composition, microstructure, hardness, and wear properties of high-speed steel rolls, Metallurgical and Materials Transactions A, Korea 30A (1999), 399-409.
Doi:10.1007/s11661-999-0329-9

[10] J. Blaha, C. Krempaszky and E. A. Werner, Carbide distribution effects in cold work tool steels, Proceedings of the 6th International Tooling Conference, Karlstad, Sweden, Karlstad University (2002), 289-298.

[11] M. Boccalini Jr. and A. Sinatora, Microstructure and wear resistance of high speed steel for rolling mills rolls, Proceedings of the 6th International Tooling Conference, Karlstad, Sweden, Karlstad University (2002), 509-524.

[12] C. Rodenburg and W. M. Rainforth, A quantitative analysis of the influence of carbides size distributions on wear behaviour of high-speed steel in dry rolling/sliding contact, Elsevier Ltd., IMMPETUS, Department of Engineering Materials, University of Sheffield, Acta Materialia 55 (2007), 2443-2454.
Doi:10.1016/j.actamat.2006.11.039

[13] K. L. Johnson, Contact Mechanics, Cambridge University Press, Cambridge, 1985.

[14] W. Sitek, A mathematical model of the hardness of high-speed steels, Transactions of Famena XXXIV-3, Institute of Engineering Materials and Biomaterials Silesian University of Technology, Gliwice, Poland (2010), 39-46. UDC 669.14:539.53

[15] ASTM E3-91, Standard practice for preparation of meta¬llographic specimens, ASTM International (1991), 82-86.

[16] ASTM E92-82, Standard test methods for Vickers hardness of metallic materials, ASTM International (1991), 260-268.

[17] ASTM E18-89a, Standard test methods for Rockwell hardness and Rockwell superficial hardness of metallic materials, ASTM International (1991), 176-189.