References

HYDROPHILIC FLUOROCARBON COATINGS VIA PLASMA ENHANCED-CHEMICAL VAPOUR CO-DEPOSITION OF ACRYLIC ACID AND HEXAFLUOROPROPYLENE OXIDE


[1] J. A. Horsfall and K. V. Lovell, Synthesis and characterization of acrylic acid-grafted hydrocarbon and fluorocarbon polymers with the simultaneous or mutual grafting technique, J. of Appl. Polym. Sci. 87 (2003), 230-243.

[2] F. Arefì-Khonsari and M. Tatoulian, Plasma processing of polymers by a low frequency discharge with asymmetrical configuration of electrodes in Advanced Plasma Technology, R. d’Agostino, P. Favia, H. Ikegami, Y. Kawai, N. Sato and F. Arefì-Khonsari, (eds.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, (2007), 137-152.

[3] L. Leng, S. Li, Y. Li, H. Li, L. Zhang, J. Zhai, Y. Song, B. Liu, L. Jiang and D. Zhu, Super hydrophobic surfaces: From natural to artificial, Adv. Mater. 14 (2002), 1857-1860.

[4] W. Chen, A. Y. Fedeev, M. C. Hsieh, D. Oner, J. Youngblood and T. J. McCarthy, Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples, Langmuir 15 (1999), 3395-3399.

[5] C. J. Drumond, Z. R. Vasic, N. Geddes, M. C. Jurich, R. C. Chatelier, T. R. Gengenbach and H. J. Griesser, Hydrophobic radiofrequency plasma-deposited polymer-films-dielectric-properties and surface forces, Colloids Surf. A, Physiochem. Eng. Asp. 117 (1997), 129-130.

[6] C. M. G. Carlsson and G. Strom, Reduction and oxidation of cellulose surfaces by means of cold-plasma, Langmuir 7(11) (1991), 2492-2497.

[7] F. Denes, Z. Q. Hua, E. Barrios, R. A. Young and J. Evans, Influence of rf-cold plasma treatment on the surface-properties of paper, J. Macromol. Sci. Pure Appl. Chem. 32 (1995), 1405-1443.

[8] H. T. Sahin, S. Manolache, R. A. Young and F. Denes, Surface fluorination of paper under CF4 - RF plasma environments, Cellulose 9 (2002), 171-181.

[9] F. W. Billmeyer, Textbook of Polymer Science, Wiley, New York, 1971.

[10] A. Chapiro, Radiation Chemistry of Polymeric Systems, Interscience, New York, 1962.

[11] H. A. J. Battaerd and G. W. Tregear, Graft Copolymers, Wiley, New York, 1967.

[12] A. Singh and J. Silverman, Radiation Processing of Polymers, Hanser, Munich, 1992.

[13] Z. Jiang, Y. Meng and Y. Shi, Synthesis of proton-exchange membranes by a plasma polymerization technique, Japanese J. of Appl. Physic 8 (2008), 6891-6895.

[14] V. Kumar, J. Pulpytel and F. Arefì-Khonsari, Fluorocarbon coatings via plasma enhanced chemical vapor deposition of 1h,1h,2h,2h-perfluorodecyl acrylate-2, morphology, wettability and antifouling characterization, Plasma Proc. and Polym. 7 (2010), 926-938.

[15] H. Mugurama and J. Karube, Plasma-polymerized films for biosensors, Trends Anal. Chem. 18 (1999), 63-70.

[16] R. Daw, S. Candan, A. J. Beck, A. J. Devlin, I. M. Brook, S. MecNeil, R. A. Dawson and R. D. Short, Plasma copolymer surfaces of acrylic acid 1,7 octadiene: Surface characterisation and the attachment of ROS 17/2.8 osteoblast-like cells, Biomaterials 19 (1998), 1717-1725.

[17] J. G. Calderon, A. Harsch, G. W. Gross and R. B. Timmons, Stability of plasma-polymerized allylamine films with sterilization by autoclaving, J. Biomed. Mater. Res. 42 (1998), 597-603.

[18] J. T. Grant, H. Jiang, S. Tullis, W. E. Johnson, K. Eyink, P. Fleitz and T. J. Bunning, The growth and characterization of photonic thin films, Vacuum 80 (2005), 12-19.

[19] D. Jung, S. Yeo, J. Kim, B. Kim, B. Jin and D.-Y. Ryu, Formation of amine groups by plasma enhanced chemical vapor deposition and its application to DNA array technology, Surf. Coat. Technol. 200 (2006), 2886-2891.

[20] A. Hiratsuka, H. Muguruma, K. H. Lee and I. Karube, Organic plasma process for simple and substrate-independent surface modification of polymeric BioMEMS devices, Biosens. & Bioelectron. 19 (2004), 1967-1672.

[21] E. T. Kang, K. L. Tan, K. Kato, Y. Uyama and Y. Ikada, Surface modification and functionalization of polytetrafluoroethylene films, Macromol. 29 (1996), 6872-6879.

[22] B. R. Pistillo, L. Detomaso, E. Sardella, P. Favia and R. d’Agostino, RF-plasma deposition and surface characterization of stable (COOH)-rich thin films from cyclic L-lactide, Plasma Proc. Polym. 4(S1) (2007), S817-S820.

[23] G. Beamson, D. Briggs in High Resolution XPS of Organic Polymers, J. Wiley & Sons, Chichester, 1992.

[24] P. Louette et al., Surf. Sci. Spectra 12 (2005), 22.

http://dx.doi.org/10.1116/11.20050905

[25] G. Cicala, A. Milella, F. Palumbo, P. Rossini, P. Favia and R. d\\\\\\\'Agostino, Nanostructure and composition control of fluorocarbon films from modulated tetrafluoroethylene plasmas, Macromol. 35(24) (2002), 8920-8922.

[26] P. Favia, G. Cicala, A. Milella, F. Palumbo, P. Rossini and R. d’Agostino, Deposition of superhydrophobic fluorocarbon coatings in modulated RF glow discharges, Surf. and Coat. Technol. 169-170 (2003), 609-612.

[27] A. Milella, F. Palumbo, P. Favia, G. Cicala and R. d’Agostino, PE-CVD of organic thin films with controlled surface concentration of carboxylic groups, Plasma Proc. and Polym. 1(2) (2004), 164-170.

[28] L. Detomaso, R. Gristina, G. S. Senesi, R. d’Agostino and P. Favia, Stable plasma-deposited acrylic acid surfaces for cell culture applications, Biomaterials 26 (2005), 3831-3841.

[29] P. Brault, S. Roualdes, A. Caillard, A.-L. Thomann, J. Mathias, J. Durand, C. Countanceau, J.-M. Léger, C. Charles and R. Boswell, Solid polymer fuel cell synthesis by low pressure plasmas: A short review, Eur. Phys. J. Appl. Phys. 34 (2006), 151-156.