References

IMPROVING THE MECHANICAL PROPERTIES AND APATITE FORMATION ABILITY OF NANO-HYDROXYAPATITE/POLYAMIDE 66 COMPOSITE FOR USING AS THE INTERVERTEBRAL FUSION CAGE


[1] X. Yang, Y. Song, L. Liu, H. Liu, J. Zeng and F. Pei, Anterior reconstruction with nano-hydroxyapatite/polyamide.e-66 cage after thoracic and lumbar corpectomy, Orthopeedics 35 (2012), 66-73.

[2] Z. Zhao, D. Jiang, Y. Ou, K. Tang, X. Luo and Z. Quan, A hollow cylindrical nano-hydroxyapatite/polyamide composite strut for cervical reconstruction after cervical corpectomy, J. Clinical Neurosci. 19 (2012), 536-540.

[3] S. I. Roohani-Esfahani, Y. Chen, J. Shi and H. Zreiqat, Fabrication and characterization of a new, strong and bioactive ceramic scaffold for bone regeneration, Mater. Lett. 107 (2013), 378-381.

[4] Y. Ramaswamy, C. Wu, H. Zhou and H. Zreiqat, Biological response of human bone cells to zinc-modified Ca-Si-based ceramics, Acta Biomaterialia 4 (2008), 1487-1497.

[5] S. I. Roohani-Esfahani, C. R. Dunstan, B. Davies, S. Pearce, R. Williams and H. Zreiqat, Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds, Acta Biomaterialia 8 (2012), 4162-4172.

[6] Y. Xiong, C. Ren, B. Zhang, H. Yang, Y. Lang, L. Min, W. Zhang, F. Pei, Y. Yan, H. Li, A. Mo, C. Tu and H. Duan, Analyzing the behavior of a porous nano-hydroxyapatite/polyamide 66 (n-HA/PA66) composite for healing of bone defects, Int. J. Nanomedicine 9 (2014), 485-494.

[7] J. G. Seiler and J. Johnson, Iliac crest autogenous bone grafting: Donor site complications, J. South Orthop. Assoc. 9 (2000), 91-97.

[8] D. W. Hutmacher, J. T. Schantz, L. CX, T. KC and L. TC, State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective, J. Bone Joint Surg. Am. 1 (2007), 245-60.

[9] C. T. Laurencin and L. S. Nair, Nanotechnology and Regenerative Engineering: The Scaffold, Second Edition, CRC Press, New York, 2014.

[10] X. Zhanga, Y. Zhanga, X. Zhangb, Y. Wanga, J. Wanga, M. Lua and H. Li, Mechanical properties and cytocompatibility of carbon fibre reinforced nanohydroxyapatite/polyamide 66 ternary biocomposite, J. Mech. Behave. Biomed. Mater. 42 (2015), 267-273.

[11] W. Jie and L. Yubao, Tissue engineering scaffold material of nano-apatite crystals and polyamide composite, Europe. Polymer J. 40 (2004), 509-515.

[12] Q. Xu, H. Lu, J. Zhang, G. Lu, Z. Deng and A. Mo, Tissue engineering scaffold material of porous nanohydroxyapatite/polyamide 66, Int. J. Nanomedicine 5 (2010), 331-335.

[13] H. Ht, M. Me and H. Rt, Complications of multilevel cervical corpectomies and reconstruction with titanium cages and anterior plating, J. Spinal Disord. 16 (2003), 1-9.

[14] J. S. Thalgott, C. Xiongsheng and J. M. Giuffre, Single stage anterior cervical reconstruction with titanium mesh cages, local bone graft, and anterior plating, Spine. J. 3 (2003), 294-300.

[15] M. F. Maitz, Applications of synthetic polymers in clinical medicine, Biosurface and Biotribology 1 (2015), 161-176.

[16] B. M. Willie, A. Petersen, K. Schmidt-Bleek, A. Cipitria, M. Mehta and P. Strube, Designing biomimetic scaffolds for bone regeneration: Why aim for a copy of mature tissue properties if nature uses a different approach? Soft Matter 6 (2010), 4976-4987.

[17] D. Tadic, F. Beckmann, K. Schwarz and M. Epple, A novel method to produce hydroxylapatite objects with interconnecting porosity that avoids sintering, Biomaterial 25 (2004), 3335-3340.

[18] I. Sopyan, M. Mel, S. Ramesh and K. A. Khalid, Porous hydroxyapatite for artificial bone applications, Sci. Techno. Adv. Mater. 8 (2007), 116-123.

[19] S. Sadeghzade, R. Emadi and H. Ghomi, Mechanical alloying synthesis of forsterite-diopside nanocomposite powder for using in tissue engineering, Ceram. Silika. 59 (2015), 1-5.

[20] M. Bohner and J. Lemaitre, Can bioactivity be tested in vitro with SBF solution?, Biomaterials 30 (2009), 2175-2179.

[21] S. Sadeghzade, R. Emadi and S. Labbaf, Formation mechanism of nanohardystonite powder prepared by mechanochemical synthesis, Adv. Powder Technol. 27 (2016), 2238-2244.

[22] S. Sadeghzade, R. Emadi, F. Tavangarian and M. Naderi, Fabrication and evaluation of silica-based ceramic scaffolds for hard tissue engineering applications, Mater. Sci. Eng. C 71 (2017), 431-438.

[23] L. C. Gerhardt and A. R. Boccaccini, Bioactive glass and glass-ceramic scaffolds for bone tissue engineering, Mater. 3 (2010), 3867-3910.

[24] A. J. W. Johnson and B. A. Herschler, A review of the mechanical behavior of CaP and CaP/polymer composites for applications in bone replacement and repair, Acta Biomater. 7 (2011), 16-30.

[25] S. Sadeghzade, F. Shamoradi, R. Emadi and F. Tavangarian, Fabrication and characterization of baghdadite nanostructured scaffolds by space holder method, J. mech. Behave. Biomed. Mater. 68 (2017), 1-7.

[26] F. Schwarz, A. Sculean, K. Bieling, D. Ferrari, D. Rothamel and J. Becker, Two-year clinical results following treatment of periimplantitis lesions using a nanocrystalline hydroxyapatite or a natural bone mineral in combination with a collagen membrane, J. Clin. Periodontol. 35 (2008), 80-87.

[27] P. V. Giannoudis, H. Dinopoulos and E. Tsiridis, Bone substitutes: An update, Injury 36 (2005), 20-27.

[28] C. Gualandi, Porous Polymeric Bioresorbable Scaffolds for Tissue Engineering, Springer Thesis, Italy, 2011.

[29] H. Zhang and B. W. Darvell, Constitution and morphology of hydroxyapatite whiskers prepared using amine additives, J. Europ. Ceram. Soc. 30 (2010), 2041-2048.

[30] I. Cacciotti, A. Bianco, M. Lombardi and L. Montanaro, Mg-substituted hydroxyapatite nanopowders: Synthesis, thermal stability and sintering behaviour, J. Europ. Ceram. Soc. 29 (2009), 2969-2978.