References

MINERALIZATION OF OXIDIZED ALGINATE-GELATIN-BIPHASIC CALCIUM PHOSPHATE HYDROGEL COMPOSITE FOR BONE REGENERATION


[1] M. Navarro, A. Michiardi, O. Castaño and J. A. Planell, Biomaterials in orthopaedics, Journal of the Royal Society Interface 5 (2008).

[2] A. S. Hoffman, Hydrogels for biomedical application, Advanced Drug Delivery Reviews 43 (2002), 3-12.

[3] K. Gkioni, S. C. Leeuwenburgh, T. E. Douglas, A. G. Mikos and J. A. Jansen, Mineralization of hydrogels for bone regeneration, Tissue Engineering Part B Reviews 16 (2010), 577-585.

[4] W. Cao and L. L. Hench, Bioactive materials, Ceramics International 22 (1996), 493.

[5] S. M. Rea, S. M. Best and W. Bonfield, Bioactivity of ceramic-polymer composites with varied composition and surface topography, Journal of Materials Science- Materials in Medicine 15 (2004), 997.

[6] N. Engin and A. Tas, Manufacture of macroporous calcium hydroxyapatite bioceramics, Journal of the European Ceramic Society 19 (1999), 2569-2572.

[7] D. Michel, B. Laurent, M. Gérard, T. Arnaud, L. Jianxi, L. Anne, L. Véronique and C. Francis, Processing and properties of biphasic calcium phosphates bioceramics obtained by pressureless sintering and hot isostatic pressing, Journal of the European Ceramic Society 33 (2013), 1263-1270.

[8] S. T. P. Manjubala and R. V. S. Kumar, Bone in-growth induced by biphasic calcium phosphate ceramic in femoral defect of dogs, Journal of Biomaterials Applications 19 (2005), 341-360.

[9] K. Anselme, Osteoblast adhesion on biomaterials, Biomaterials 21 (2000), 667-681.

[10] V. Sanginario, M. P. Ginebra, K. E. Tanner, J. A. Planell and L. Amabrosio, Biodegradable and semi-biodegradable composite hydrogels as bone substitutes: Morphology and mechanical characterization, Journal of Materials Science- Materials in Medicine 17 (2006), 447-454.

[11] K. R. Mohamed, H. H. Beherei and Z. M. El-Rashidy, In vitro study of nano-hydroxyapatite chitosan gelatin composites for bio applications, Journal of Advanced Research 5(2) (2014), 201-208.

[12] P. Wang, L. Zhao, J. Liu, M. D. Weir, X. Zu and H. H. K. Xu, Bone tissue engineering via nanostructured calcium phosphate biomaterials and stem cells, Bone Research 2 (2014), 14017.

[13] T. P. Nguyen and B. T. Lee, Fabrication of oxidized alginate-gelatin-BCP hydrogels and evaluation of the microstructure, material properties and biocompatibility for bone tissue regeneration, Journal of Biomaterials Applications 27(3) (2012), 311-321.

[14] Y. Yuji, Y. Fen, C. Junfeng, Z. Fujing, L. Xiulan and Y. Kangde, Preparation and characterization of macroporous chitosan-gelatin/b-tricalcium phosphate composite scaffolds for bone tissue engineering, Journal of Biomedical Materials Research 67A (2003), 844-855.

[15] L. Junjie, D. Yan, Y. Jun, Y. Yuji, Z. Hong, Y. Fanglian, W. Haibin and Y. Kangde, Surface characterization and biocompatibility of micro- and nano-hydroxyapatite/ chitosan-gelatin network films, Materials Science and Engineering C 29 (2009), 1207-1215.

[16] A. Veis and J. R. Dorvee, Biomineralization mechanisms: A new paradigm for crystal nucleation in organic matricies, Calcified Tissue International 93(4) (2013), 307-315.

[17] T. Kokubo and H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27(15) (2006), 2907-2915.

[18] A. A. Zadpoor, Relationship between in vitro apatite-forming ability measured using simulated body fluid and in vivo bioactivity of biomaterials, Materials Science and Engineering C- Materials for Biological Applications 35 (2014).

[19] K. Anselme, Osteoblast adhesion on biomaterials, Biomaterials 21(7) (2000), 667-681.

[20] J. Venugopal Gupta, S. Mitra, V. R. G. Dev and S. Ramakrishna, Nanostructured biocomposite substrates by electrospinning and electrospraying for the mineralization of osteoblasts, Biomaterials 30(11) (2009), 2085-2094.

[21] M. Ngiam, S. Liao, A. J. Patil, Z. Cheng, C. K. Chan and S. Ramakrishna, The fabrication of nano-hydroxyapatite on PLGA and PLGA/collagen nanofibrous composite scaffolds and their effects in osteoblastic behavior for bone tissue engineering, Bone 45(1) (2009), 4-16.

[22] L. Ambrosio Ciapetti, L. Savarino, D. Granchi, E. Cenni, N. Baldini, S. Pagani, S. Guizzardi, F. Causa and A. Giunti, Osteoblast growth and function in porous poly ε-caprolactone matrices for bone repair: A preliminary study, Biomaterials 24(21) (2003), 3815-3824.

[23] L. Zhang, N. Hanagata, M. Maeda, T. Minowa, T. Ikoma, H. Fan and X. Zhang, Porous hydroxyapatite and biphasic calcium phosphate ceramics promote ectopic osteoblast differentiation from mesenchymal stem cells, Science and Technology of Advanced Materials 10(2) (2009).

[24] A. L. Gamblin, M. A. Brennan, A. Renaud, H. Yagita, F. Lézot, D. Heymann, V. Trichet and P. Layrolle, Bone tissue formation with human mesenchymal stem cells and biphasic calcium phosphate ceramics: The local implication of osteoclasts and macrophages, Biomaterials 35(36) (2014), 9660-9667.

[25] N. Özkucur, T. K. Monsees, S. Perike, H. Q. Do and R. H. W. Funk, Local calcium elevation and cell elongation initiate guided motility in electrically stimulated osteoblast-like cells, PLoS One 4(7) (2009), e6131.

[26] S. Maeno, Y. Niki, H. Msumoto, H. Morioka, T. Yatabe, A. Funayama, Y. Toyama, T. Taguchi and J. Tanaka, The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture, Biomaterials 26(23) (2005).

[27] A. Golding, J. A. Guay, C. H. Rincon, M. Levin and D. L. Kaplan, A tunable silk hydrogel device for studying limb regeneration in Adult Xenopus Laevis, PLoS One 11(6) (2016), e0155618.