References

SYNTHESIZING OPAL-LIKE AND INVERSE OPAL-LIKE STRUCTURES AND THEIR USE AS ELECTRODE MODIFIED SURFACES FOR INDOOR AIR CLEANERS


[1] V. Abramova and A. Sinitskii, Large-scale ZnO inverse opal films fabricated by a sol-gel technique, Superlattices and Microstructures 45 (2009), 624-629.

[2] J. Chang, Journal of Electrostatics 57 (2003), 273-291.

[3] Y. Jin, Y. Zhu, X. Yang, Ch. Wei and Ch. Li, Fabrication and characterization of cerium-doped titania inverse opal by sol-gel method, Materials Chemistry and Physics 106 (2007), 209-214.

[4] B. H. Juárez and C. López, J. Phys. Chem. B 108(43) (2004), 16708-16712.

[5] S. K. Karuturi, Ch. Cheng, L. Liu, L. T. Su, H. J. Fan and A. I. Y. Tok, Inverse opals coupled with nanowires as photo-electrochemical anode, Nano Energy 1 (2012), 322-327.

[6] J. J. Kelly, S. H. Goods, A. A. Talin and J. T. Hachman, Electrodeposition of Ni from low-temperature sulfamate electrolytes I, Electrochemistry and film stress, Journal of the Electrochemical Society 153 (2006), C318-C324.

[7] M. Kocik, J. Dekowski and J. Mizeraczyka, Journal of Electrostatics 63 (2005), 761-766.

[8] T. Kudo, Y. Kudo and A. Ruike, Catalysis Today 122 (2007), 14-19.

[9] Y. Kuroda and Y. Kawada, Journal of Electrostatics 57 (2003), 407-415.

[10] H. Lei, L. Wang and Z. Wu, Journal of Computational Physics 193 (2004), 697-707.

[11] L. Liu, S. K. Karuturi, L. T. Su and A. I. Y. Tok, inverse-opal electrode fabricated by atomic layer deposition for dye-sensitized solar cell applications, Energy Environ. Sci. 4 (2011), 209-215.

[12] L. Liu, S. K. Karuturi, L. T. Su, Q. Wang and A. I. Yoong Tok, Electrochromic photonic crystal displays with versatile color tenability, Electrochemistry Communications 13 (2011), 1163-1165.

[13] Y. Ma, J. F. Chen, Y. Ren and X. Tao, Transition metal-doped titania inverse opals: Fabrication and characterization, Colloids and Surfaces A: Physicochem. Eng. Aspects 370 (2010), 129-135.

[14] A. Mizuno, IEEE Trans. Dielectr. Electr. Ins. 5 (2000), 615-624.

[15] K. S. P. Nikas, A. A. Varonos and G. C. Bergeles, Journal of Electrostatics 63 (2005), 423-443.

[16] Patent US3372059-A, Dow Chem GMBH; Ag, Cu or Ni-plating onto non-conductive glass or plastic surfaces by the Brashear, Rochelle salt or formaldehyde wet reduction processes is improved by the add, 1968.

[17] Patent US4403001; Grenier; John W. (General Electric Company), Electroless application of a silver coating to diamond particles, 1981.

[18] J. Podlinski, A. Niewulisa, J. Mizeraczyka and P. Attenc, Journal of Electrostatics 66 (2008), 246-253.

[19] M. Sillanpää, M. Geller, H. Phuleria and C. Sioutas, Journal of Aerosol Science 39 (2008), 335-347.

[20] Y. Tsuru, M. Nomura and F. R. Foulkes, Effects of boric acid on hydrogen evolution and internal stress in films deposited from a nickel sulfamate bath, Journal of Applied Electrochemistry 32 (2002), 629-634.

[21] A. Wang, S. L. Chen, Peng Dong and Z. Zhou, Preparation of photonic crystal heterostructures composed of two inverse opal films with different filling factors, Synthetic Metals 161 (2011), 504-507.

[22] M. S. Waring, J. A. Siegel and R. L. Corsi, Ultrafine particle removal and generation by portable air cleaners, Atmospheric Environment 42(20) (2008), 5003-5014.

[23] S. H. Yeo, L. K. Teh and C. C. Wong, J. Porous Mater. 13 (2006), 281-285.

[24] Y. Zhao, B. Yang, J. Xu, Z. Fu, M. Wu and F. Li, Facile synthesis of Ag nanoparticles supported on inverse opal with enhanced visible-light photocatalytic activity, Thin Solid Films 520 (2012), 3515-3522.

[25] Y. Zhang, M. Fu, J. Wang, D. He and Y. Wang, Photonic crystal heterostructures fabricated by and ZnO inverse opals using colloidal crystal template with single kind of microspheres, Optical Materials 34 (2012), 1758-1761.