References

QUANTIFICATION OF CORROSION RATE UNDER SALT FOG CORROSION TEST AND PITTING CORROSION TEST ON AZ61A MAGNESIUM ALLOY WELDS


[1] Hikmet Altun and Sadri Sen, Studies on the influence of chloride ion concentration and pH on the corrosion of AZ63 magnesium alloy, Mater. Des. 25 (2004), 637-643.

[2] N. Aslan, Application of response surface methodology and central composite rotatable design for modelling and optimization of a multi gravity separator for chromite concentration, Powd. Tech. 185 (2008), 80-86.

[3] ASM International, Metals Handbook, Corrosion, 9th Edition, Vol. 13, ASM International, 1987.

[4] Robert Babion, Corrosion Tests and Standards: Application and Interpretation, ASTM International, 2005.

[5] G. E. P. Box and N. R. Draper, Empirical Model Building and Response Surface, John Wiley and Sons, New York, 1987.

[6] A. Dhanapal, S. Rajendra Boopathy and V. Balasubramanian, Developing an empirical relationship to predict the corrosion rate of friction stir welded AZ61A magnesium alloy under salt fog environment, Mater. Des. 32 (2011), 5066-5072.

[7] M. G. Fontana and N. D. Greene, Corrosion Engineering, McGraw-Hill, New York, 1984.

[8] Lili Gao, Chunhong Zhang, Milin Zhang, Xiaomel Huang and Nan Sheng, The corrosion of a novel Mg-11Li-3Al-0.5RE alloy in alkaline NaCl solution, J. All. and Comp. 468 (2009), 285-289.

[9] H. P. Godard, W. B. Lepson, M. R. Bothewell and R. L. Kane, The Corrosion of Light Metals, Wiley, New York, 1967.

[10] Kok-Hui Goh, Teik-Thye Lim and Peng-Cheong Chui, Evaluation of the effect of dosage, pH and contact time on high-dose phosphate inhibition for copper corrosion control using response surface methodology (RSM), Corr. Sci. 50 (2008), 918-927.

[11] Nobuyoshi Hara, Yasuhiro Kobayashi, Daisuke Kagaya and Noburu Akao, Formation and breakdown of surface films on magnesium and its alloys in aqueous solutions, Corr. Sci. 49 (2007), 166-175.

[12] D. A. Jones, Principles and Prevention of Corrosion, Prentice-Hall, Englewood Cliffs, NJ, 1992.

[13] Tonya S. King, Vernon M. Chinchilli and Josep L. Carrasco, A repeated measures concordance correlation coefficient, Stat. Med. 26 (2007), 3095-3113.

[14] Lin Li, A concordance correlation coefficient to evaluate reproducibility, Biomet. 45 (1989), 255-268.

[15] O. Lunder and A. S. Langseth, Measurement of Hydrogen evolution from corroding Mg, SINTEF Metallurgy Corrosion Center (Internal Report), Norway, 1992.

[16] B. L. Modike and T. Ebert, Magnesium-properties, applications and potential, Mater. Sci. Engg. A 302 (2001), 37-45.

[17] T. Nagasawa, M. Otsuka, T. Yokota and T. Ueki, Structure and Mechanical Properties of Friction Stir Weld Joints of Magnesium Alloy AZ31; in: H. I. Kaplan, J. Hryn and B. Clow [Eds.], Magnesium Technology 2000 TMS, Warrendale, (2000), 383-387.

[18] L. M. Peng, J. W. Chang, X. W. Guo, A. Atrens, W. J. Ding and Y. H. Peng, Influence of heat treatment and microstructure on the corrosion of magnesium alloy Mg-10Gd-3Y-0.4Zr, J. Appl. Electrochem 39 (2009), 913-920.

[19] Zhiming Shi, Ming Liu and Andrej Atrens, Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation, Corr. Sci. 52 (2010), 579-588.

[20] G. L. Song and A. Atrens, Corrosion mechanisms of magnesium alloys, Adv. Eng. Mater. 1 (1999), 11-33.

[21] G. L. Song, A. Atrens and D. H. St. John, An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys, In: J. N. Hyrn (Ed.), Magnesium Technology 2001, New Orleans, USA, (2001), 255-262.

[22] G. L. Song, Recent progress in corrosion and protection of magnesium alloys, Adv. Eng. Mater. 7 (2005), 563-586.

[23] Yingwei Song, Dayong Shan, Rongshi Chen and En-Hou Han, Effect of second phases on the corrosion behaviour of wrought Mg-Zn-Y-Zr alloy, Corr. Sci. 52 (2010), 1830-1837.

[24] H. H. Uhlig, Corrosion and Corrosion Control, Wiley, New York, 1973.

[25] Lei Wang, Bo-Ping Zhang and Tadashi Shinohara, Corrosion behaviour of AZ91magnesium alloy in dilute NaCl solutions. Mater. Des. 31 (2010), 857-863.

[26] D. Weiss et al., Corrosion Resistance Evaluation of Magnesium and Magnesium Alloys by an Ion Selective Electrode, Proceedings of the First Israeli International Conference on Magnesium Science and Technology, 1997.

[27] Weifeng Xu, Jinhe Liu and Hongqiang Zhu, Pitting corrosion of friction stir welded aluminum alloy thick plate in alkaline chloride solution, Electrochimica Acta 55 (2010), 2918-2923.

[28] R. C. Zeng, J. Zhang, W. J. Huang, W. Dietzel, K. U. Kainer, C. Blawert and W. Ke, Review of studies on corrosion of magnesium alloys, Trans. Non-Ferr. Met. Soc. China 16 (2006), s763-s771.

[29] R. C. Zeng, W. Dietzel, R. Zettler, J. Chen and K. U. Kainer, Microstructure evolution and tensile properties of friction-stir-welded AM50 magnesium alloy, Trans. Non-Ferr. Met. Soc. China 18 (2008), s76-s80.

[30] Zhimin Zhang, Hongyan Xu and Baocheng Li, Corrosion properties of plastically deformed AZ80 magnesium alloy, Trans. Non-Ferr. Met. Soc. China 20 (2010), s697-s702.

[31] Ming Zhao, Shusen Wu, Ji-Rong Luo, Y. Fukuda and H. Nakae, A
Chromium-free conversion coating of magnesium alloy by a phosphate-permanganate solution, Surf. Coat. Tech. 200 (2006), 5407-5412.

[32] M. C. Zhao, M. Liu, G. L. Song and A. Atrens, Influence of microstructure on corrosion of As-cast ZE41, Adv. Eng. Mater. 10 (2008), 104-111.

[33] M. C. Zhao, M. Liu, G. L. Song and A. Atrens, Influence of the beta-phase morphology on the corrosion of the Mg alloy AZ91, Corr. Sci. 50 (2008), 1939-1953.

[34] M. C. Zhao, M. Liu, G. L. Song and A. Atrens, Influence of the pH and chloride ion concentration on the corrosion of Mg alloy ZE41, Corr. Sci. 50 (2008), 3168-3178.

[35] M. C. Zhao, P. Schmutz, S. Brunner, M. Liu, G. L. Song and A. Atrens, An exploratory study of the corrosion of Mg alloys during interrupted salt spray testing, Corr. Sci. 51 (2009), 1277-1292.