References

AN INVESTIGATION INTO TRIBOLOGICAL BEHAVIOUR OF AL-TIN-GRAPHITE NANO-COMPOSITES FABRICATED BY FRICTION STIR PROCESSING


[1] F. Akhlaghi and A. Zare-Bidaki, Influence of graphite content on the dry sliding and oil impregnated sliding wear behaviour of Al2024-graphite composites produced by in situ powder metallurgy method, Wear 266 (2009), 37-45.

[2] S. A. Alidokht, A. Abdollah-Zadeh, S. Soleymani and H. Assadi, Microstructure and triboligical performance of an aluminum alloy based hybrid composite produced by friction stir processing, Materials and Design 32 (2011), 2727-2733.

[3] S. K. Biswas and B. N. Pramila Bai, Dry wear of Al-graphite particle composites, Wear 68 (1981), 347-358.

[4] S. Das and S. V. Prasad, Microstructure and wear of cast (Al-Si alloy)-graphite composites, Wear 133 (1989), 173-187.

[5] A. Esmaeili, M. K. Besharati Givi and H. R. Zareie Rajani, A metallurgical and mechanical study on dissimilar friction stir welding of aluminum 1050 to brass (CuZn30), Materials Science and Engineering A 528 (2011), 7093-7102.

[6] N. Farhat Zoheir, Wear resistant composite coatings, Materials Characterization 60 (2009), 337-345.

[7] Liming Ke, Huang Chunping, Xing Li and Huang Kehui, Al-Ni Intermetallic composites produced in situ by friction stir processing, Journal of Alloys and Compounds 503 (2010), 494-499.

[8] Z. Y. Ma, Friction stir processing technology: A review, Metallurgical and Materials Transactions A 39 (2008), 642-658.

[9] J. W. Martin and R. D. Doherty, Stability of Microstructures in Metallic Systems, Cambridge University Press, Cambridge, 1976.

[10] R. S. Mishra, Z. Y. Ma and I. Charit, Friction stir processing: A novel technique for fabrication of surface composite, Materials Science and Engineering A 341 (2003), 307-310.

[11] R. S. Mishra and Z. Y. Ma, Friction stir welding and processing, Materials Science and Engineering R 50 (2005), 1-78.

[12] R. Nadan, T. Debroy and H. K. D. H. Bhadeshia, Recent advances in friction-stir welding-process, weldment structure and properties, Progress in Materials Science 53 (2008), 980-1023.

[13] K. Naplocha and K. Granat, Dry sliding wear of Al/Saffil/C hybrid metal matrix composites, Wear 265 (2008), 1734-1740.

[14] M. Raaft, T. S. Mahmoud, H. M. Zakaria and T. A. Khalifa, Microstructural, mechanical and wear behaviour of A390/graphite and surface composites fabricated using FSP, Materials Science and Engineering A 528 (2011), 5741-5746.

[15] R. E. Reed-Hill and R. Abbaschian, Physical Metallurgy Principles, Third Edition, PWS Publication Company, Boston, 1994.

[16] A. R. Riahi and A. T. Alpas, The role of tribo-layers on the sliding wear behaviour of graphitic aluminum matrix composites, Wear 251 (2001), 1396-1407.

[17] A. Shafiei-Zarghani, S. F. Kashani-Bozorg and A. Zarei-Hanzaki, Microstructures and mechanical properties of surface nano-composite layer produced by friction stir processing, Materials Science and Engineering A 500 (2009), 84-91.

[18] A. Shafiei-Zarghani, S. F. Kashani-Bozorg and A. Zarei-Hanzaki, Wear assessment of nano-composite surface layer produced using friction stir processing, Wear 270 (2011), 403-412.

[19] S. Suresha and B. K. Sridhara, Wear characteristics of hybrid aluminum matrix composites reinforced with graphite and silicon carbide particulates, Composites Science and Technology 70 (2010), 1652-1659.

[20] S. Wilson and A. T. Alpas, Wear mechanism maps for metal matrix composites, Wear 212 (1997), 41-49.

[21] G. H. Wu, J. Su, H. S. Gou, Z. Y. Xiu and L. T. Jiang, Study on graphite fiber and Ti particle reinforced Al composite, Journal of Materials Science 44 (2009), 4776-4780.

[22] B. Zahmatkesh, M. H. Enayati and F. Karimzadeh, Tribological and microstructural evaluation of friction stir processed Al2024 alloy, Materials and Design 31 (2010), 4891-4896.

[23] J. Zhang and A. T. Alpas, Transition between mild and severe wear in aluminum alloys, Acta Materialia 45 (1997), 513-528.