References

NEW-FANGLED ALGORITHM FOR SOLVING REACTIVE POWER PROBLEM


[1] O. Alsac and B. Scott, Optimal load flow with steady state security, IEEE Transaction. PAS (1973), 745-751.

[2] K. Y. Lee and Y. M. Paru and J. L. Oritz, A united approach to optimal real and reactive power dispatch, IEEE Transactions on Power Apparatus and Systems PAS 104 (1985), 1147-1153.

[3] A. Monticelli, M. V. F. Pereira and S. Granville, Security constrained optimal power flow with post contingency corrective rescheduling, IEEE Transactions on Power Systems: PWRS 2(1) (1987), 175-182.

[4] N. Deeb and S. M. Shahidehpur, Linear reactive power optimization in a large power network using the decomposition approach, IEEE Transactions on Power System 5(2) (1990), 428-435.

[5] E. Hobson, Network cons rained reactive power control using linear programming, IEEE Transactions on power systems PAS 99(4) (1980), 868-877.

[6] K. Y. Lee, Y. M. Park and J. L. Oritz, Fuel −cost optimization for both real and reactive power dispatches, IEE Proc. 131C(3) (1992), 85-93.

[7] M. K. Mangoli and K. Y. Lee, Optimal real and reactive power control using linear programming, Electr. Power Syst. Res. 26 (1993), 1-10.

[8] C. A. Canizares, A. C. Z. de Souza and V. H. Quintana, Comparison of performance indices for detection of proximity to voltage collapse, 11(3) (1996), 1441-1450.

[9] S. R. Paranjothi and K. Anburaja, Optimal power flow using refined genetic algorithm, Electr. Power Compon. Syst. 30 (2002), 1055-1063.

[10] D. Devaraj and B. Yeganarayana, Genetic algorithm based optimal power flow for security enhancement, IEE Proc.-Generation, Transmission and Distribution 152(6) (2005).

[11] A. Berizzi, C. Bovo, M. Merlo and M. Delfanti, A GA approach to compare ORPF objective functions including secondary voltage regulation, Electric Power Systems Research 84(1) (2012), 187-194.

[12] C.-F. Yang, G. G. Lai, C.-H. Lee, C.-T. Su and G. W. Chang, Optimal setting of reactive compensation devices with an improved voltage stability index for voltage stability enhancement, International Journal of Electrical Power and Energy Systems 37(1) (2012), 50-57.

[13] P. Roy, S. Ghoshal and S. Thakur, Optimal VAR control for improvements in voltage profiles and for real power loss minimization using biogeography based optimization, International Journal of Electrical Power and Energy Systems 43(1) (2012), 830-838.

[14] B. Venkatesh, G. Sadasivam and M. Khan, A new optimal reactive power scheduling method for loss minimization and voltage stability margin maximization using successive multi-objective fuzzy LP technique, IEEE Transactions on Power Systems 15(2) (2000), 844-851.

[15] W. Yan, S. Lu and D. Yu, A novel optimal reactive power dispatch method based on an improved hybrid evolutionary programming technique, IEEE Transactions on Power Systems 19(2) (2004), 913-918.

[16] W. Yan, F. Liu, C. Chung and K. Wong, A hybrid genetic algorithm interior point method for optimal reactive power flow, IEEE Transactions on Power Systems 21(3) (2006), 1163-1169.

[17] J. Yu, W. Yan, W. Li, C. Chung and K. Wong, An unfixed piecewise optimal reactive power-flow model and its algorithm for ac-dc systems, IEEE Transactions on Power Systems 23(1) (2008), 170-176.

[18] F. Capitanescu, Assessing reactive power reserves with respect to operating constraints and voltage stability, IEEE Transactions on Power Systems 26(4) (2011), 2224-2234.

[19] Z. Hu, X. Wang and G. Taylor, Stochastic optimal reactive power dispatch: Formulation and solution method, International Journal of Electrical Power and Energy Systems 32(6) (2010), 615-621.

[20] A. Kargarian, M. Raoofat and M. Mohammadi, Probabilistic reactive power procurement in hybrid electricity markets with uncertain loads, Electric Power Systems Research 82(1) (2012), 68-80.

[21] J. H. Thorp and D. C. Rogers, Thorp and Covich’s Freshwater Invertbrates: Ecology and General Biology, Elsevier, Amsterdam, 2014.

[22] M. Wikelski, D. Moskowitz, J. S. Adelman, J. Cochran, D. S. Wilcove and M. L. May, Simple rules guide dragonfly migration, Biol. Lett. 2 (2006), 325-329.

[23] W. Russell, M. L. May, K. L. Soltesz and J. W. Fitzpatrick, Massive swarm migrations of dragonflies (Odonata) in eastern North America, Am. Midl. Nat. 140 (1998), 325-342.

[24] S. Mirjalili, Dragonfly algorithm: A new meta-heuristic optimization technique for solving single-objective, discrete, and multi-objective problems, Neural Computing and Applications, in press (2015).

[25] C. W. Reynolds, Flocks, herds and schools: A distributed behavioral model, ACM SIGGRAPH Comput. Gr. 21 (1987), 25-34.

[26] Hüseyin Hakli and Harun Uğuz, Levy flight distribution for Scout bee in artificial bee colony algorithm, Lecture Notes on Software Engineering 1(3) (2013).

[27] Q. H. Wu, Y. J. Cao and J. Y. Wen, Optimal reactive power dispatch using an adaptive genetic algorithm, Int. J. Elect. Power Energy Syst. 20 (1998), 563-569.

[28] B. Zhao, C. X. Guo and Y. J. Cao, Multiagent-based particle swarm optimization approach for optimal reactive power dispatch, IEEE Trans. Power Syst. 20(2) (2005), 1070-1078.

[29] K. Mahadevan and P. S. Kannan, Comprehensive learning particle swarm optimization for reactive power dispatch, Applied Soft Computing 10(2) (2010), 641-652.

[30] A. H. Khazali and M. Kalantar, Optimal reactive power dispatch based on harmony search algorithm, Electrical Power and Energy Systems 33(3) (2011), 684-692.

[31] S. Sakthivel, M. Gayathri and V. Manimozhi, A nature inspired optimization algorithm for reactive power control in a power system, International Journal of Recent Technology and Engineering (IJRTE) 2(1) (2013), 29-33.