References

ON THE FORMAL MODEL FOR IEC 61499 COMPOSITE FUNCTION BLOCKS


[1] A. Zoitl and V. Vyatkin, IEC 61499 architecture for distributed automation: The “glass half full” view, IEEE Industrial Electronics Magazine 3(4) (2009), 7-23.
DOI: https://doi.org/10.1109/MIE.2009.934789

[2] C. Gerber, H.-M. Hanisch and S. Ebbinghaus, From IEC 61131 to IEC 61499 for distributed systems: A case study, EURASIP Journal on Embedded Systems, Article 231630 (2008), 1-8.

[3] K. Thramboulidis, IEC 61499 vs. 61131: A comparison based on misperceptions, Journal of Software Engineering and Applications 6(8) (2013), 405-415.
DOI: https://doi.org/10.4236/jsea.2013.68050

[4] N. Kashyap, C. Yang, S. Sierla and P. G. Flikkema, Automated fault location and isolation in distribution grids with distributed control and unreliable communication, IEEE Transactions on Industrial Electronics 62(4) (2015), 2612-2619.
DOI: https://doi.org/10.1109/TIE.2014.2387093

[5] G. Zhabelova, V. Vyatkin and V. N. Dubinin, Toward industrially usable agent technology for smart grid automation, IEEE Transactions on Industrial Electronics 62(4) (2015), 2629-2641
DOI: https://doi.org/10.1109/TIE.2014.2371777

[6] P. Lindgren, J. Eriksson, M. Lindner, A. Lindner, D. Pereira and L. M. Pinho, End-to-end response time of IEC 61499 distributed applications over switched ethernet, IEEE Transaction on Industrial Informatics 13(1) (2017), 287-297.
DOI: https://doi.org/10.1109/TII.2016.2626463

[7] L. I. Pinto, C. D. Vasconcellos, R. S. U. Rosso and G. H. Negri, ICARU-FB: An IEC 61499 compliant multiplatform software infrastructure, IEEE Transactions on Industrial Informatics 12(3) (2016), 1074-1083.
DOI: https://doi.org/10.1109/TII.2016.2549862

[8] F. Andren, R. Brundlinger and T. Strasser, IEC 61850/61499 control of distributed energy resources: Concept, guidelines, and implementation, IEEE Transactions on Energy Conversion 29(4) (2014), 1008-1017.
DOI: https://doi.org/10.1109/TEC.2014.2352338

[9] T. Peng, X. Xu and L. Wang, A novel energy demand modelling approach for CNC machining based on function blocks, Journal of Manufacturing Systems 33(1) (2014), 196-218.
DOI: https://doi.org/10.1016/j.jmsy.2013.12.004

[10] G. Čengić, O. Ljungkrantz and K. Åkesson, Formal modeling of function block applications running in IEC 61499 execution runtime, in Proceedings of the 11th IEEE International Conference on Emerging Technologies and Factory Automation (2006), 1269-1276.
DOI: https://doi.org/10.1109/ETFA.2006.355187

[11] S. Panjaitan and G. Frey, Functional design for IEC 61499 distributed control systems using UML activity diagrams, Proceedings of the 2005 International Conference on Instrumentation, Communications and Information Technology ICICI 2005, Bandung, Indonesia (2005), 64-70.

[12] M. Fletcher and R. W. Brennan, Designing holonic manufacturing systems using the IEC 61499 (function block) architecture, IEICE Transactions on Information and Systems E84D(10) (2001), 1398-1401.

[13] C. Sunder, A. Zoitl, J. H. Christensen, M. Colla and T. Strasser, Execution models for the IEC 61499 elements composite function block and subapplication, 5th IEEE International Conference on Industrial Informatics (INDIN'07), Vienna, Austria (2007), 1169-1175.
DOI: https://doi.org/10.1109/INDIN.2007.4384941

[14] W. J. Kim and S. I. Cha, Research on the structural model of IEC 61499 applications with composite function blocks, Bulletin of the Academy of Science, the DPR Korea 375(3) (2017), 25-26.

[15] G. D. Shaw, P. S. Roop and Z. Salcic, A hierarchical and concurrent approach for IEC 61499 function blocks, 2009 IEEE Conference on Emerging Technologies & Factory Automation (ISSN: 978-1-4244-2728-4), 1 (2009), 1-8.
DOI: https://doi.org/10.1109/ETFA.2009.5347020

[16] R. Sinha, P. S. Roop, G. Shaw, Z. Salcic and M. M. Y. Kuo, Hierarchical and concurrent ECCs for IEC 61499 function blocks, IEEE Transactions on Industrial Informatics 12(1) (2016), 59-68.
DOI: https://doi.org/10.1109/TII.2015.2496262

[17] W. Dai, V. N. Dubinin and V. Vyatkin, Migration from PLC to IEC 61499 using semantic web technologies, IEEE Transactions on Systems, Man, and Cybernetics: Systems 44(3) (2014), 277-291.
DOI: https://doi.org/10.1109/TSMCC.2013.2264671

[18] V. Dubinin and V. Vyatkin, On definition of a formal model for IEC 61499 function blocks, EURASIP Journal Embedded Systems (2008), 1-10.
DOI: https://doi.org/10.1155/2008/426713

[19] G. Čengić and K. Åkesson, On formal analysis of IEC 61499 applications, Part A: Modeling, IEEE Transactions on Industrial Informatics 6(2) (2010), 136-144.
DOI: https://doi.org/10.1109/TII.2010.2040392

[20] G. Čengić and K. Åkesson, On formal analysis of IEC 61499 applications, Part B: Execution semantics, IEEE Transactions on Industrial Informatics 6(2) (2010), 145-154.
DOI: https://doi.org/10.1109/TII.2010.2040393

[21] J. Carlson and L. Lednicki, Timing Analysis for IEC 61499, Version 1.0 (2012), 1-19.

[22] D. L’Her, P. L. Parc and L. Marcé, Proving sequential function chart programs using timed automata, Theoretical Computer Science 267(1-2) (2001), 141-155.
DOI: https://doi.org/10.1016/S0304-3975(00)00301-7

[23] J.-R. Beauvais, E. Rutten, T. Gautier, R. Houdebine, P. L. Guernic and Y.-M. Tang, Modeling statecharts and activitycharts as SIGNAL equations, ACM Transaction on Software Engineering Methodology 10(4) (2001), 397-451.
DOI: https://doi.org/10.1145/384189.384191