References

ON THE LOOKBACK DISTORTION RISK MEASURE: THEORY AND APPLICATIONS


[1] P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Thinking coherently, RISK 10(11) (1997), 68-71.

[2] P. Artzner, F. Delbaen, J.-M. Eber and D. Heath, Coherent measures of risk, Mathematical Finance 9(3) (1999), 203-228.

[3] D. Blackwell and L. E. Dubins, A converse to the dominated convergence theorem, Illinois Journal of Mathematics 7 (1963), 508-514.

[4] D. Denneberg, Premium calculation: Why standard deviation should be replaced by absolute deviation, ASTIN Bulletin 20 (1990), 181-190.

[5] D. Denneberg, Non-Additive Measure and Integral, Theory and Decision Library, Series B, Vol. 27, Kluwer Academic Publishers, 1994.

[6] M. Denuit, C. L. Lefèvre and M. Shaked, The s-convex orders among real random variables, with applications, Math. Inequalities and their Applications 1 (1998), 585-613.

[7] L. E. Dubins and D. Gilat, On the distribution of the maxima of martingales, Transactions of the American Mathematical Society 68 (1978), 337-338.

[8] M. J. Goovaerts, R. Kaas and J. Dhaene, Economic capital allocation derived from risk measures, North American Actuarial Journal 7(2) (2003), 44-56.

[9] G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Mathematica 54 (1930), 81-116.

[10] D. G. Hobson and J. L. Pedersen, The minimum maximum of a continuous martingale with given initial and terminal laws, Annals of Probability 30 (2002), 978-999.

[11] W. Hürlimann, On stop-loss order and the distortion pricing principle, ASTIN Bulletin 28(1) (1998a), 119-134.

[12] W. Hürlimann, Inequalities for Lookback Option Strategies and Exchange Risk Modelling, Proc. 1st Euro-Japanese Workshop on Stochastic Risk Modelling for Insurance, Finance, Production and Reliability (1998), Brussels, 1998b.
Available at https://sites.google.com/site/whurlimann/home

[13] W. Hürlimann, Higher degree stop-loss transforms and stochastic orders (I): Theory, Blätter DGVM XXIV(3) (2000), 449-463.

[14] W. Hürlimann, Conditional value-at-risk bounds for compound Poisson risks and a normal approximation, Journal of Applied Mathematics 3(3) (2003), 141-154.

[15] W. Hürlimann, Distortion risk measures and economic capital, North American Actuarial Journal 8(1) (2004), 86-95.

[16] W. Hürlimann, Extremal Moment Methods and Stochastic Orders - Application in Actuarial Science, Bol. Asoc. Mat. Venez. XV, num. 1, 5-110, num. 2 (2008), 153-301.

[17] R. Kaas, A. E. van Heerwaarden and M. J. Goovaerts, Ordering of Actuarial Risks, CAIRE Education Series 1, Brussels, 1994.

[18] R. P. Kertz and U. Rösler, Martingales with given maxima and terminal distributions, Israel Journal of Mathematics 69 (1990), 173-192.

[19] R. P. Kertz and U. Rösler, Stochastic and convex orders and lattices of probability measures, with a martingale interpretation, Israel Journal of Mathematics 77 (1992), 129-164.

[20] I. Meilijson and A. Nàdas, Convex majorization with an application to the length of critical paths, Journal of Applied Probability 16 (1979), 671-677.

[21] L. Rüschendorf, On conditional stochastic ordering of distributions, Advances in Applied Probability 23 (1991), 46-63.

[22] M. Shaked and J. G. Shanthikumar, Stochastic Orders and their Applications, Academic Press, New York, 1994.

[23] S. Wang, Insurance pricing and increased limits ratemaking by proportional hazards transforms, Insurance: Mathematics and Economics 17 (1995), 43-54.

[24] S. Wang, Premium calculation by transforming the layer premium density, ASTIN Bulletin 26 (1996), 71-92.

[25] S. Wang, An actuarial index of the right-tail index, North American Actuarial Journal 2(2) (1998), 88-101.

[26] S. Wang, A Risk Measure that Goes Beyond Coherence, 12th Int. AFIR Colloq., Cancun, 2002.
URL: http://www.actuaries.org/EVENTS/Congresses/Cancun/afir_subject/afir_14 _wang.htm

[27] S. Wang, V. R. Young and H. H. Panjer, Axiomatic characterization of insurance prices, Insurance: Mathematics and Economics 21 (1997), 173-183.

[28] J. L. Wirch and M. R. Hardy, A synthesis of risk measures for capital adequacy, Insurance: Mathematics and Economics 25 (1999), 337-347.

[29] T. Yoshiba and Y. Yamai, Comparative analyses of expected shortfall and value-at-risk (2): Expected utility maximization and tail risk, Working paper, Bank of Japan, Tokyo, 2001.
Available at www.gloria-mundi.com/