References

WEYL'S THEOREM FOR ALGEBRAICALLY TOTALLY OPERATORS


[1] P. Aiena and O. Monsalve, Operators which do not have the single values extension property, J. Math. Anal. Appl. 250 (2000), 435-448.

[2] A. Aluthge, On p-hyponormal operators for Integral Equations Operator Theory 13(3) (1990), 307-315.

[3] A. Aluthge, Some generalized theorems on p-hyponormal operators, Integral Equations Operator Theory 24(4) (1996), 497-501.

[4] T. Ando, On some operator inequalities, Math. Ann. 279(1) (1987), 157-159.

[5] S. C. Arora and P. Arora, On p-quasihyponormal operators for Yokohama Math J. 41 (1993), 25-29.

[6] M. Berkani, Index of B-Fredholm operators and poles of the resolvant, J. Math. Anal. Appl. 272 (2002), 596-603.

[7] M. Berkani and A. Arround, Generalized Weyl’s theorem and hyponormal operators, J. Aust. Math. Soc. 76 (2004), 291-302.

[8] M. Berkani and J. Koliha, Weyl type theorems for bounded linear operators, Acta Scientiarum Mathematicarum (Szeged) 69 (2003), 359-376.

[9] S. L. Campbell and B. C. Gupta, On operators, Math. Joponica. 23 (1978), 185-189.

[10] L. A. Coburn, Weyl’s theorem for nonnormal operators, Michigan Math. J. 13 (1966), 285-288.

[11] H. Crawford Rhaly, Posinormal operators, J. Math. Soc. Japan 46 (1994), 587-605.

[12] R. E. Curto and Y. M. Han, Weyl’s theorem for algebraically paranormal operators, Integral Equations Operator Theory 47 (2003), 307-314.

[13] S. S. Dragomir and M. S. Moslehian, Some inequalities for operators in Hilbert spaces, Ser. Math. Infom. 23 (2008), 39-47.

[14] B. P. Duggal and S. V. Djorjovic, Dunford’s property (c) and Weyl’s theorem, Integral Equations Operator Theory 43(3) (2002), 290-297.

[15] L. Fialkow, A note on the operator Trans. Amer. Math. Soc. (1978), 147-168.

[16] J. K. Finch, The single valued extension property on a Banach space, Pacific J. Math. 58 (1975), 61-69.

[17] T. Fututa, M. Ito and T. Yamazaki, A subclass of paranormal including class of log-hyponormal and several related classes, Scientiae Mathematicae 1 (1998), 389-403.

[18] R. Harte, Fredholm, Weyl and Browder theory, Proceedings of the Royal Irish Academy 85A (1985), 151-176.

[19] R. Harte, Invertibility and Singularity for Bounded Linear Operators, Dekker, New York, 1988.

[20] J. J. Koliha, A generalized Drazin inverse, Glasgow Math. J. 38 (1996), 367-381.

[21] K. B. Laursen, Operators with finite ascent, Pacific J. Math. 152(2) (1992), 323-336.

[22] K. B. Laursen and M. Newmann, An Introduction to Local Spectral Theory, London Mathematical Society, Monographs, New Series 20, Calendon Press, Oxford, 2000.

[23] W. Y. Lee and S. H. Lee, A spectral mapping theorem for the Weyl spectrum, Glasgow Math. J. 38 (1996), 61-64.

[24] S. Mecheri, Generalized a-Weyl’s theorem for some classes of operators, Nihonkai Math. J. 17 (2006), 155-165.

[25] M. S. Moslehian, On operators in Hilbert spaces, Image 39 (2007), 39-47.

[26] Muneo Cho, Masuo Ito and Satoru Oshiro, Weyl’s theorem holds for p-hyponormal operators, Glasgow Math. J. 39 (1997), 217-220.

[27] M. H. Rashid, M. S. M. Noorani and A. S. Saari, Weyl’s type theorems for algebraically class A operators, General Mathematics 16(3) (2008), 99-117.

[28] F. Riesz and B. Sz. Nagy, Functional Analysis, Frederick Ungar, New York, 1955.

[29] S. Roch and B. Silbermann, Continuity of generalized inverses in Banach algebras, Studia Math. 136 (1999), 197-227.

[30] J. Stella, Irene Mary and S. Panayappan, Weyl’s theorem for class operators, Glasgow Math. J. 50 (2008), 39-46.

[31] A. Uchiyama and T. Yoshino, On the class operators, Nihonkai Math. J. 8 (1997), 179-194.

[32] B. I. Wadhwa, M-hyponormal operators, Duke Math. J. 41(3) (1974), 655-660.

[33] H. Weyl, Uber beschrankte quadratishe formen, deren differenz vollsteig ist, Rendiconti del Circolo Matematico di Palermo 27 (1909), 373-392.

[34] D. Xia, Spectral Theory of Hyponormal Operators, Birkhauser Verlag, Boston, 1983.

[35] C. Xiaohong, G. Moazhang and M. Bin, Weyl type theorem for p-hyponormal and M-hyponormal operators, Studia Math. 163 (2004), 177-188.