References

A SINGLE NILPOTENT APPROXIMATION FOR A FAMILY OF NONEQUIVALENT DISTRIBUTIONS


[1] A. A. Agrachev, Canonical Nilpotentization of Control Systems, Preprint, 1997 (3 pages).

[2] A. A. Agrachev, R. V. Gamkrelidze and A. V. Sarychev, Local invariants of smooth control systems, Acta Appl. Math. 14 (1989), 191-237.

[3] A. A. Agrachev and A. V. Sarychev, Filtrations of a Lie algebra of vector fields and nilpotent approximation of control systems, Dokl. Akad. Nauk SSSR 295 (1987); English transl. in Soviet Math. Dokl. 36 (1988), 104-108.

[4] A. A. Agrachev and A. Marigo, Nonholonomic tangent spaces: Intrinsic construction and rigid dimensions, Electronic Res. Announc. Amer. Math. Soc. 9 (2003), 111-120.

[5] A. A. Agrachev and A. Marigo, Rigid Carnot algebras: A classification, J. Dynam. Control Syst. 11 (2005), 449-494.

[6] A. Bellaïche, The tangent space in sub-Riemannian geometry, in: A. Bellaïche and J.-J. Risler (Eds.), Sub-Riemannian Geometry, Birkhäuser, 1996, 1-78.

[7] R. M. Bianchini and G. Stefani, Graded approximations and controllability along a trajectory, SIAM J. Control Optimiz. 28 (1990), 903-924.

[8] H. Hermes, Nilpotent approximations of control systems and distributions, SIAM J. Control Optimiz. 24 (1986), 731-736.

[9] H. Hermes, Nilpotent and high-order approximations of vector field systems, SIAM Review 33 (1991), 238-264.

[10] G. Sklyar and S. Yu. Ignatovich, Description of all privileged coordinates in the homogeneous approximation problem for nonlinear control systems, C. R. Acad. Sci. Paris, Sér. I 344 (2007), 109-114.

[11] G. Sklyar and S. Yu. Ignatovich, Fliess series, a generalization of Ree’s theorem, and an algebraic approach to the homogeneous approximation problem, Int. J. Control 81 (2008), 369-378.

[12] F. Jean, The car with N trailers: Characterization of the singular configurations, ESAIM: Control, Optimization and Calculus of Variations 1 (1996), 241-266 (electronic).

[13] A. Kumpera and C. Ruiz, Sur l’équivalence locale des systèmes de Pfaff en drapeau, in: F. Gherardelli (Ed.), Monge-Ampère Equations and Related Topics, Ist. Alta Math. F. Severi, Rome, 1982, 201-248.

[14] R. Montgomery and M. Zhitomirskii, Geometric approach to Goursat flags, Ann. Inst. H. Poincaré - AN 18 (2001), 459-493.

[15] R. Montgomery and M. Zhitomirskii, Points and Curves in the Monster Tower, Memoirs Amer. Math. Soc. 956, AMS, Providence, 2010.

[16] P. Mormul, Local classification of rank-2 distributions satisfying the Goursat condition in dimension 9, in: P. Orro and F. Pelletier (Eds.), Singularités et Géométrie sous-riemannienne, Collection Travaux en cours 62, Hermann, 2000, 89-119.

[17] P. Mormul, Goursat flags: Classification of codimension-one singularities, J. Dynam. Control Syst. 6 (2000), 311-330.

[18] P. Mormul, Goursat distributions not strongly nilpotent in dimensions not exceeding seven, in: A. Zinober and D. Owens (Eds.), Nonlinear and Adaptive Control, Lecture Notes in Control and Inform. Sci. 281, Springer, 2003, 249-261.

[19] P. Mormul, Real moduli in local classification of Goursat flags, Hokkaido Math. J. 34 (2005), 1-35.

[20] P. Mormul, Kumpera-Ruiz algebras in Goursat flags are optimal in small lengths, J. Math. Sciences 126 (2005), 1614-1629.

[21] P. Mormul, Do moduli of Goursat distributions appear on the level of nilpotent approximations?, in: J.-P. Brasselet and M. A. S. Ruas (Eds.), Real and Complex Singularities (Trends in Mathematics), Birkhäuser, 2006, 229-246.

[22] L. P. Rothschild and E. M. Stein, Hypoelliptic differential operators and nilpotent groups, Acta Math. 137 (1976), 247-320.