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Abstract 

In this paper, a new kernel function, which yields an efficient primal-dual interior-point 
method, is introduced. Iteration bounds for large-update methods are derived, namely, 

( ) ,log3
2


nnO  which significantly improve the classical iteration bounds. Iteration bounds 

for small-update methods are derived, namely, ( ) ,log

nnO  which are currently the best 

known bounds. 

Keywords: linear optimization, primal-dual interior-point methods, large-
update methods, small-update methods, kernel function. 
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1. Introduction 

After the landmark paper of Karmarkar [1], linear optimization (LO) 
revitalized as an active area of research. The interior-point methods 
(IPMs) is one of the most efficient methods for solving LO problems. For a 
survey, we refer to recent books on the subject [2-4]. It is generally 
agreed that these IPMs are most efficient from a computational point of 
view (see Andersen et al. [5]). This is especially true for so-called primal-
dual large-update methods, which are the most efficient methods in 
practice [5]. 

Most of the classical primal-dual interior point methods (IPMs) for 
LO are based on the use of the logarithmic barrier function [5]. If n 
denotes the number of inequalities in the problem, then the theoretical 

iteration bounds is, ( )

nnO log  and ( ),log


nnO  for the so-called 

small-update methods and the so-called large-update methods, where   
represents the desired accuracy of the solution. However, in practice, the 
so-called large-update methods are much more efficient than the so-
called small-update methods. The significant gap between the practical 
behaviour and the theoretical performance results of the large- and 
small-update methods, which has been referred to as the irony of IPMs 
[6], is being an open difficult problem. 

To narrow the gap, Peng et al. [7, 8] introduced self-regular barrier 
functions for primal-dual IPMs for LO and obtained so far the best 

complexity result, ( ),loglog

nnnO  for large-update primal-dual IPMs 

with some specific self-regular barrier functions. Then, Bai et al. [9-14] 
proposed new primal-dual IPMs based on various kernel functions to 

improve the iteration bounds for large-update methods from ( )

nnO log  

to ( ).loglog

nnnO  Especially, Bai et al. [10] proposed a new class of 

barrier functions which are called eligible, neither logarithmic barrier 
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nor self-regular, and they presented a unified computational framework 
for the complexity analysis of the algorithm. And they greatly simplified 
the analysis of IMPs. Recently, in order to resolve the open difficulty, 
which is the gap between the practical behaviour and the theoretical 
performance results of the large-and small-update methods, many works 
have been done, and a large amount of results have been reported, see 
[15-18]. 

Motivated by their works, we define a new kernel function which 
yielding a new primal-dual interior point algorithm based on this kernel 
function for LO. It shows that the iteration bounds for the new small-

update methods is ( ),log

nsqrtnO  which is currently the best known 

bounds. The iteration bounds for the new large-update methods is 

( ),log3
2


nnO  which significantly improve the classical iteration bounds. 

The paper is organized as follows. In Section 2, we briefly review the 
basic concepts on IPMs for LO, such as the central path, the new search 
directions. The generic polynomial interior-point algorithm for LO is also 
presented. In Section 3, we define a new kernel function and give its 
properties, which play a crucial role in the complexity analysis of 
algorithm. The complexity analysis is also performed in Section 4. 
Finally, Section 5 contains some concluding remarks and directions for 
future research. 

Some notation used throughout the paper is as follows. First, ,, nn
+RR  

and n
++R  denote the set of vectors with n components, the set of 

nonnegative vectors, and the set of positive vectors, respectively. The        
2-norm and the infinity norm are denoted by ⋅  and ,∞⋅  respectively. 

If ,, nsx R∈  then xs  denotes the componentwise (or Hadamard) product 

of the vectors x and s. Furthermore, e denotes the all-one vector of length 

n. If nz +∈ R  and ,: ++ → RRf  then ( )zf  denotes the vector in n
+R  
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whose i-th component is ( )izf  with .1 ni ≤≤  We write ( ) ( )( )xgOxf =  if 

( ) ( )xcgxf ≤  for some positive constant c and ( ) ( )( )xgxf Θ=  if ( ) ≤xgc1  

( ) ( )xgcxf 2≤  for positive constants 1c  and .2c  

2. Preliminaries 

2.1. The central path 

We consider the standard linear optimization 

{ },0,:min ≥= xbAxxcT   (P) 

where ( ) ,,rank, mnm bmAA RR ∈=∈ ×  and ,nc R∈  and its dual 

problem 

{ }.0,:max ≥=+ scsyAyb TT   (D) 

It is well known that finding an optimal solution of (P) and (D) is 
equivalent to solving the following system: 

,0, ≥= xbAx  

 ,0, ≥=+ scsyAT  (1) 

.0=xs   

The basic idea of primal-dual IPMs is to replace the third equation in (1), 
the so-called complementarity condition for (P) and (D), by the 
parameterized equation ,exs µ=  with .0>µ  Thus, we consider the 

system 

,0, ≥= xbAx  

 ,0, ≥=+ scsyAT  (2) 

.exs µ=   
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Due to the last equation, any solution ( )syx ,,  of (2) will satisfy 0>x  

and .0>s  So a solution exists only if (P) and (D) satisfy the interior-

point condition (IPC), i.e., there exists ( )000 ,, ysx  such that 

.0,,0, 00000 >=+>= scsyAxbAx T   (3) 

Surprisingly enough, if the IPC is satisfied, then there exists a solution, 
for each ,0>µ  and this solution is unique. It is denoted as ( ( ) ( ),, µµ yx  
( ))µs  and we call ( )µx  the center-µ  of (P) and ( ) ( )( )µµ sy ,  the center-µ  

of (D). The set of centers-µ  (with µ  running through all positive real 
numbers) gives a homo type path, which is called the central path of (P) 
and (D). The relevance of the central path for LO was recognized first by 
Sonnevend [19] and Megiddo [20]. If 0,→µ  then the limit of the central 
path exists and since the limit points satisfy the complementarity 
condition, the limit yields optimal solutions for (P) and (D). 

From a theoretical point of view, the IPC can be assumed without 

loss of generality. In fact we may, and will, assume that .00 esx ==  In 
practice, this can be realized by embedding the given problems (P) and 
(D) into a homogeneous self-dual problem which has two additional 
variables and two additional constraints. For this and the other 
properties mentioned above, see [2]. 

2.2. The search directions 

IPMs follow the central path approximately. We briefly describe the 
usual approach. Without loss of generality, we assume that ( ( ) ( ),, µµ yx  
( ))µs  is known for some positive .µ  For example, due to the above 

assumption, we may assume this for ,1=µ  with ( ) ( ) .11 esx ==  We then 
decrease µ  to ( )µ1: θ−=µ  for some fixed ( )1,0θ ∈  and we solve the 
following Newton system: 

 ,0=∆xA  

,0=∆+∆ syAT  (4) 

xsesxxs −µ=∆+∆   
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This system uniquely defines a search direction ( ).,, ysx ∆∆∆  By taking a 
step along the search direction, with the step size defined by some line 
search rules, one constructs a new triple ( ).,, syx  If necessary, we repeat 
the procedure until we find iterates that are “close” to ( ( ) ( ),, µµ yx  ( )).µs  
Then µ  is again reduced by the factor θ−1  and we apply Newton’s 
method targeting at the new centers,-µ  and so on. This process is 
repeated until µ  is small enough, say until ;n ≤µ  at this stage we have 
found an solution-  of the problems (P) and (D). 

Let us mention that in practice many LO solvers use the - solution to 
construct a basic solution and then produce an optimal basic solution by 
crossing over to the simplex method. An alternative way is to apply a 
rounding procedure as described by Ye and Mehrotra [21, 22] and Roos et 
al. [2]. 

The result of a Newton step with step size α  is denoted as 

,:,: sssxxx ∆α+=∆α+= ++   (5) 

where the step size α  satisfy ( ).10 ≤α≤  

Now we introduce the scaled vector v and the scaled search directions 
xd  and sd  as follows: 

.:,:,: s
svdx

xvdxsv sx
∆=∆=

µ
=  (6) 

The system (4) can be rewritten as follows: 

,0=xdA  

 ,0=+∆ s
T dyA  (7) 

,1 vvdd sx −=+ −   

where ( ) ( ).diag:,diag:,1: 1 xXvVXAVA ==
µ

= −  Note that the right 

side of the third equation in (7) equals the negative gradient of the 
logarithmic barrier function ( ),vlΨ  i.e., 
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( ),vdd lsx Ψ∇−=+   (8) 

where the barrier function ( ) +++ →Ψ RRn
l v :  is defined as follows: 

( ) ( ) ( ),:;,:
1

il

n

i
ll vvsxv /=µΨ=Ψ ∑

=

 (9) 

( ) .log2
12

i
i

il v
v

vv −
−

=/  (10) 

We call ( )tvl/  the kernel function of the logarithmic barrier function 

( ).vlΨ  In this paper, we replace ( )tvl/  with a new kernel function ( )tv/  

which will be defined in Section 3. Note that the pair ( )sx,  coincides 

with the ( ) ( )( )µµµ sx ,center-  if and only if .e=v  One can easily verify 

that the kernel function ( )tv/  as defined by (10) is a strictly convex 

function which is defined for any ++∈ Rt  and which is minimal at ,1=t  

whereas the minimal value equals 0. 

2.3. The generic interior-point algorithm for LO 

The generic form of this algorithm is shown in Figure 1. 

It is clear from the description that the closeness of ( )sx,  to ( ( ),µx ( ))µs  

is measured by the value of  ( ),vlΨ  with 0>τ  as a threshold value.       

If ( ) ,τ≤Ψ vl  then we start a new outer iteration by performing a 

update,-µ  otherwise we enter an inner iteration by computing the search 

directions at the current iterates with respect to the current value of µ  

and apply (5) to get new iterates. If it is necessary, we repeat the 
procedure until we find iterates that are in the neighbourhood of ( ( ),µx ( )).µs  

Then µ  is again reduced by the factor θ−1  with 10 <θ<  and we apply 

Newton’s method targeting at the new centers,-µ  and so on. This process 

is repeated until µ  is small enough, say until ,<µn  at this stage we 

have found an eapporximat-  solution of LO. 
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The parameters θ,τ  and the step size α  should be chosen in such a 

way that the algorithm is optimized in the sense that the number of 
iterations required by the algorithm is as small as possible. The choice of 
the so-called barrier update parameter θ  plays an important role both in 
theory and practice of IPMs. Usually, if θ  is a constant independent of 

the dimension n of the problem, for instance ,2
1=θ  then we call the 

algorithm a large-update (or long-step) method. If θ  depends on the 

dimension of the problem, such as ,1
n

=θ  then the algorithm is named 

a small-update (or short-step) method. 

The choice of the step size ( )10 ≤α<α  is another crucial issue in 

the analysis of the algorithm. It has to be made, such that the closeness 
of the iterates to the current center-µ  improves by a sufficient amount. 

In the theoretical analysis, the step size α  is usually given a value that 
depends on the closeness of the current iterates to the center.-µ  
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Generic Interior-Point Algorithm for LO 

Input: 

     A threshold parameter ;0>τ  

     an accuracy parameter ;0>ε  

     a fixed barrier update parameter ;10, <θ<θ  

begin 

     ;1:;:;: =µ== esex  

     while ε≥µn  do 

     begin 

        ( ) ;1: µθ−=µ  

        while ( ) τ>µΨ ;, sxl  do 

        begin 

            solve system (7) via (6) to obtain ( ) ;,, syx ∆∆∆  

            choose a suitable step size ;α  

            ;: xxx ∆α+=  

            ;: yyy ∆α+=  

            ;: sss ∆α+=  

            ;:
µ

= xsv  

         end 

      end 

   end 

Figure 1. Generic algorithm. 
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3. The New Kernel Function and its Properties 

In this section, we define a new kernel function and give its 
properties which are essential to our complexity analysis. We call 

+++ →/ RRv :  a kernel function if v/  is twice differentiable and satisfies 

the following conditions [10]: 

 ( ) ( ) ,011 =/=′/ vv  

( ) ,0>′′/ tv  (11) 

( ) ( ) .0limlim
0

=/=/
∞→→ +

tvtv
tt

  

Now, we define a new function ( )tv/  as follows: 

( ) .0,222 >−+=/ − tmmtmttv   (12) 

For the convenience of reference, we gives the first three derivatives with 
respect to t as follows: 

( ) ,22 3−−=′/ mtmttv  

( ) ,62 4−+=′′/ mtmtv  (13) 

( ) .24 5−−=′′′/ mttv   

Obviously, ( )tv/  is a kernel function and 

( ) .262 4 mmtmtv >+=′′/ −   (14) 

In this paper, we replace the function ( )vlΨ  in (8) with the function ( )vΨ  

as follows: 

( ).vdd sx Ψ∇−=+   (15) 

where ( ) ( ) ( )tvvvv i
n
i //=Ψ ∑ =

,1  is defined in (12). Hence the new search 

direction ( )syx ∆∆∆ ,,  is obtained by solving the following modified 

Newton system: 
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,0=∆xA  

 ,0=∆+∆ syAT  (16) 

( ).vvsxxs Ψ∇µ−=∆+∆   

Note that xd  and sd  are orthogonal because the vector xd  belongs to 

null space and sd  to the row space of the matrix .A  Since xd  and sd  are 

orthogonal, we have 

( ) ( ) ( ) ( ).,000 µ=µ=⇔=Ψ⇔=⇔=Ψ∇⇔== ssxxvevvdd sx  

(17) 

We use ( )vΨ  as the proximity function to measure the distance between 

the current iterate and the center-µ  for given 0.>µ  We also define the 

norm-based proximity measure ( ) ,: +++ →δ RRnv  as follows: 

( ) ( ) .2
1

2
1: sx ddvv +=Ψ∇=δ  (18) 

Lemma 3.1. For ( ),tv/  we have 

(i) ( )tv/  is exponentially convex for all ,0>t  that is, 

( ) ( ( ) ( )).2
1

2121 tvtvttv /+/≤/  

(ii) ( )tv ′′/  is monotonically decreasing for all .0>t  

(iii) ( ) ( ) 0>′/−′′/ tvtvt  for all .0>t  

(iv) ( ) ( ) ( ) ( ) .1,0,0 >β>>β′′/′/β−β′/′′/ ttvtvtvtv  

Proof. For (i), using (13), we have 

( ) ( ) .0,442262 333 >+=−++=′/+′′/ −−− tmtmtmtmtmtmttvtvt  

Let 

( ) .44 3−+= mtmttg  
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Then 

( ) ,124 4−−=′ mtmtg  

( ) .0,048 5 >>=′′ − tmttg  

Let ( ) ,0=′ tg  we get .34=t  Since ( )tg  is strictly convex and has a 

global minimum, ( ) .034 >g  And by Lemma 2.1.2 in [8], we have the 

result. 

For (ii), using (13), we have  ( ) ,0<′′′/ tv  so we have the result. 

For (iii), using (13), we have ( ) ( ) +−+=′/−′′/ − mtmtmttvtvt 262 3  

.0,82 33 >= −− tmtmt  

For (iv), using Lemma 2.4 in [10], (ii) and (iii), we have the result. 
This completes the proof. 

Lemma 3.2. For ( ),tv/  we have 

( ) ( ) ( ) ,0,4
11 22 >′/≤/≤− ttvmtvtm  (19) 

( ) ( ) .0,14 2 >−≤/ ttmtv  (20) 

Proof. For (19), using (11) and (14), we have 

( ) ( ) ( )2
1111

12 −=ξζ≥ξζζ′′/=/ ∫∫∫∫
ξξ

tmddmddvtv
tt

 

( ) ( ) ξζζ′′/=/ ∫∫
ξ

ddvtv
t

11
 

( ) ( ) ξζζ′′/ξ′′/≤ ∫∫
ξ

ddvvm
t

112
1  

( ) ( ) ξξ′/ξ′′/= ∫ dvvm
t

12
1  
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( ) ( )[ ]ξ′/ξ′/= ∫ vdvm
t

12
1  

( ) .4
1 2tvm

′/=  

For (20), since ( ) ( ) ( ) ( ) ,2
51,0,011 =′′/<′′′/=′/=/ vtvvv  and by using Taylor’s 

theorem, we have 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )32 16
1112

1111 −ξξ′′′/+−′′/+−′/+/=/ vtvtvvtv  

( ) ( ) ( ) ( )32 16
1112

1 −ξξ′′′/+−′′/= vtv  

( ) ( )2112
1 −′′/≤ tv  

( ) ,14 2−= tm  

for some .1, t≤ξ≤ξ  This completes the proof. 

Let [ ) [ )∞+→∞+ ,1,0:  be the inverse function of ( )tv/  for 1≥t  

and [ ) ( ]1,0,0: →∞+ρ  be the inverse function of ( )tv′/− 2
1  for all 

( ].1,0∈t  Then, we have the following lemma: 

Lemma 3.3. For ( ),tv/  we have 

( ) ,0,11 ≥+≤≤+ sm
ssm

s  (21) 

( ) .0,3 ≥
+

≥ρ sms
ms  (22) 

Proof. For (21), let ( ) ,1, ≥/= ttvs  i.e., ( ) .1, ≥= tts  By the definition of 

( ),tv/  we have 

.222 mmtsmt +−= −  
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Because mmt 22 +− −  is monotone increasing with respect to ,1≥t  we 

have 

,2 msmt +≥  

this implies that 

( ) .1+≥= m
sts  

By (19), we have ( ) ( ) ,1 2−≥/= tmtvs  so 

( ) .1 m
sts +≤=  

For (22), let ( ) ( ].1,0,2
1 ∈′/−= ttvz  By the definition of ( ) ,: tz =ρρ  

( ],1,0∈t  and ( ),2 tvz ′/−=  we have 

.222
3 mtz

t
m +=  

Because mt2  is monotone increasing with respect to ( ],1,0∈t  we have 

,222
3 mz

t
m +≤  

this implies that 

( ) .3
mz

mtz
+

≥=σ  

This completes the proof. 

Lemma 3.4. Let [ ) [ )∞+→∞+ ,1,0:  be the inverse function of ( ) .1, ≥/ ttv  

Then we have 

( ) ( ( ( ) )) .1,, ≥β∈Ψβ/≤βΨ ++Rvn
vvnv  
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Proof. Using Lemma 3.1 (iv), and Theorem 3.2 in [10], we can get the 
result. This completes the proof. 

Lemma 3.5. Let .
1

,10
θ−

=<θ≤ +
vv  If ( ) .τ≤Ψ v  Then we have 

( ) ( )21
4

mnmv τ+θ
θ−

≤Ψ +  

Proof. Since 1
1
1 ≥

θ−
 and ( ( ) ) ,1≥Ψ

n
v  we have 

( ( ) )
.1

1
≥

θ−

Ψ
n
v

 Using 

Lemma 3.4 with ,
1
1

θ−
=β  (20), (21), and ( ) ,τ≤Ψ v  we have 

( ) ( ( ( ) ))n
vvnv Ψ

θ−
/≤Ψ + 1

1  

( ( ( ) ) )21
1
14 −Ψ

θ−
≤ n

vnm  

( ( ( ) ) )211
4 θ−−Ψ

θ−
= n

vmn  

( ( ) )2111
4 θ−−

Ψ
+

θ−
≤ mn

vmn  

( )21
4

mn
mn τ+θ
θ−

≤  

( ) ,1
4 2

mnm τ+θ
θ−

=  

where the last inequality holds from θ≤θ≤
θ−+

θ=θ−− 0,
11

11 .1<  

This completes the proof. 

Denote 

( ) ( ),,,1
4~ 2

0 ττ θ=+θ
θ−

=Ψ nLmnm  (23) 

then 0
~Ψ  is an upper bound for ( )vΨ  during the process of the algorithm. 
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Remark 3.6. For large-update method by taking ( ) ( ),1, Θ=θ= nOτ  

( ).~
0 nO=Ψ  For small-update method with ( ) ( ),1,1

n
O Θ=θ=τ  

( ).1~
0 O=Ψ  

4. Analysis of Algorithm 

In this section, we compute a proper step size and the decrease of the 
proximity function during an inner iteration and give the complexity 
results of the algorithm. For fixed µ  taking a step size ,α  we have new 
iterates 

.:,: sssxxx ∆α+=∆α+= ++  

Using (6), we have 

( ) ( ) ( ),x
x dvv

x
v

dexx
xexx α+=α+=∆α+=+  

( ) ( ) ( ).s
s dvv

s
v
dess

sexs α+=α+=∆α+=+  

So we have 

( ) ( ).sx dvdvsxv α+α+=
µ

= ++
+  

Define for ,0>α  

( ) ( ) ( ).vvf Ψ−Ψ=α +  

Then ( )αf  is the difference of proximities between a new iterate and a 
current iterate for fixed .µ  By Lemma 3.1 (i), we have 

( ) ( ( ) ( ) ) ( ( ) ( )).2
1

sxsx dvdvdvdvv α+Ψ+α+Ψ≤α+α+Ψ=Ψ +  

Therefore, we have ( ) ( ),1 α≤α ff  where 

( ) ( ( ) ( )) ( ).2
1

1 vdvdvf sx Ψ−α+Ψ+α+Ψ=α  (24) 
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Obviously ( ) ( ) .000 1 == ff  Taking the first two derivative of ( )α1f  with 

respect to ,α  we have 

( ) ( ( ) ( ) ),2
1

1
1 sisiixixii

n

i
ddvvddvvf α+′/+α+′/=α′ ∑

=

 

( ) ( ( ) ( ) ).2
1 22

1
1 sisiixixii

n

i
ddvvddvvf α+′′/+α+′′/=α′′ ∑

=

 

Using (15) and (18), we have 

( ) ( ) ( ) ( ) ( ) ( ) .22
1

2
10 2

1 vvvddvf T
sx

T δ−=Ψ∇Ψ∇−=+Ψ∇=′  

For convenience we denote 

( ) ( ) ( ).:,:,min1 vvvv Ψ=Ψδ=δ=  

Lemma 4.1. Let ( )vδ  be as defined in (18). Then we have 

( ) ( ).vmv Ψ≥δ  

Proof. Using (19), we have 

( ) ( ) ( ) ( ) ,1
4
1

4
1 222

11
vmmtvmvvv

n

i
i

n

i
δ=Ψ∇=′/≤/=Ψ ∑∑

==

 

so 

( ) ( ).vmv Ψ≥δ  

This completes the proof. 

Remark 4.2. Throughout the paper, we assume that .1≥τ  Using 
Lemma 4.1 and the assumption ( ) ,τ≥Ψ v  we have 

( ) .2
1≥δ v  

From the Lemmas 4.1-4.3 in [10], we have the following Lemmas 4.3-4.5. 
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Lemma 4.3. Let ( )α1f  be as defined in (24) and ( )vδ  be as defined in (18). 

Then we have 

( ) ( ).22 min
2

1 αδ−′′/δ≤α′′ vvf  

Lemma 4.4. If the step size α  satisfies the inequality 

( ) ( ) ,22 minmin δ≤′/+αδ−′/− vvvv   (25) 

we have 

( ) .01 ≤α′f  

Lemma 4.5. Let [ ) ( ]1,0,0: →∞+ρ  be the inverse function of ( )tv′/− 2
1  

for all ( ].1,0∈t  Then the largest step size α  satisfying (25) is given by 

( ) ( )( ).22
1 δρ−δρ
δ

=α  

Lemma 4.6. Let ρ  and α  be as defined in Lemma 4.5. If ( ) ,1≥≥Ψ τv  

then we have 

( )
.

2612

1
3
43 δ+

≥α
m

 

Proof. Using Lemma 4.4 in [10], Lemma 4.2, and (22), we have 

( )( )δρ′′/
≥α 2

1
v  

( )22
162

1

δρ
+

=
mm

 

( )3
4262

1

m
mmm +δ+

≥  

( )3
4

62

1

m
mmmm +δ+δ

≥  
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3
4

3
4 3 2122

1

δ+δ
≥

mm
 

( )
.

2612

1
3
43 δ+

=
m

 

This completes the proof. 

Denote 

( )
,

2612

1~
3
43 δ+

=α
m

 (26) 

we have α~  is the default step size and .~ α≤α  

From the Lemma 1.3.3 in [8], we can get the following lemma: 

Lemma 4.7. Suppose that ( )th  is a twice differentiable convex function 

with 

( ) ( ) ,00,00 >′= hh  

and ( )th  attains its global minimum at 0>∗t  and ( )th ′′  is increasing 

with respect to t. Then for any [ ],,0 ∗∈ tt  we have 

( ) ( ) .2
0htth ′

≤  

Let the univariate function h be such that 

( ) ( ) ( ) ( ) ( ) ( ).22,200,000 min
22

11 αδ−′′/δ=α′′δ−=′=′== vvhfhfh  

Lemma 4.8. Let α~  is the default step size as defined in (26) and 
( ) .1≥Ψ v  Then 

( )
( )

( ) .
2612

3
13

2

3 vmf Ψ
+

−≤α
−

 (27) 
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Proof. Using the Lemma 4.5 in [10], if the step size α  satisfies ,~α≤α  

then ( ) .2αδ−≤αf  So, for ,~ α≤α  we have 

( ) 2δα−≤αf  

( )

2

3 3
4

2612

1 δ
δ+

−=
m

 

( )
3
2

3 2612
1 δ

+
−=

m
 

( )
( ) .

2612
3
13

2

3 vm Ψ
+

−≤
−

 

This completes the proof. 

This expresses the decrease in ( )vΨ  during an inner iteration 

completely in ,v/  its first and second derivations, and the inverse 
functions ρ  and .  

After the update of µ  to ,1 µ−  we have ( ) ( )21
4

mnmv τ+θ
θ−

≤Ψ +  

( ).,, τθ= nL  We need to count how many inner iterations are required to 

return to the situation where ( ) .τ≤Ψ v  We denote the value of ( )vΨ  

after the µ  update as ,0Ψ  the subsequent values in the same outer 

iteration are denoted as ,,,2,1, K=Ψ kk  where K denotes the total 

number of inner iterations in the outer iteration. The decrease in each 
inner iteration is given by (27). In [10], we can find the appropriate 
values of κ  and  ( ],1,0∈γ  

( )
.3

2
3
11,

2612 3
3
2

=−=γ
+

=
−

mκ  
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Lemma 4.9. Let K be the total number of inner iterations in the outer 
iteration. Then we have 

( ) .2613 3
2

3
2

0
3 Ψ+≤ mK  

Proof. By Lemma 1.3.2 in [8], we have 

( ) .2613 3
2

3
2

0
30 Ψ+=

γ
Ψ

≤
γ

mK
κ

 

This completes the proof. 

Theorem 4.10. Let a LO problem be given, 0Ψ  as defined in (23) and 

.1≥τ  Then the total number of iterations to have an approximate 
solution with <µn  is bounded by 

( ) .
log

2613 3
2

3
2

0
3

θ
Ψ+ 

n
m  

Proof. Recall that 0Ψ  is the upper bound according to (23). The number 

of outer iterations is bounded above by 

nlog1

θ
 (see [2], Section 17, page 

116). Through multiplying the number of outer iterations by the number 
of inner iterations we get an upper bound for the total number of 
iterations, namely, 

( ) .
log

2613 3
2

3
2

0
3

θ
Ψ+ 

n
m  

This completes the proof. 

Remark 4.11. Taking ( ) ( )1, Θ=θ= nOτ  and ( ),~
0 nO=Ψ  we have 

( )

nnO log3

2
 iterations complexity for large-update IPMs. Taking ( ),1O=τ  

( )
n

1Θ=θ  and ( ),1~
0 O=Ψ  we have ( )


nnO log2

1
 iterations complexity 

for small-update IPMs, which as same as the iterations complexity for 
small-update IPMs. 
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