SCHUR RING AND REDUCIBILITY MODULO \(p \)

PEDRO MANUEL DOMINGUEZ WADE

Department of Mathematics
Matanzas University
Cuba
e-mail: pedroalgebralineal@gmail.com

Abstract

Let \(R \) be a ring of algebraic integers of an algebraic number field \(F \) and let \(G \leq \text{GL}_n(R) \) be a finite group. In [11] was proved that the \(R \)-span of \(G \) is just the matrix ring \(M_n(R) \) of the \(n \times n \)-matrices over \(R \) if and only if the Brauer reduction of \(R^n \) modulo every prime is absolutely irreducible. In this paper, we show that \(\langle G \rangle_R = M_n(R) \) if and only if the Brauer reduction of \(R^n \) modulo a finite number of primes is absolutely irreducible. Moreover, we give conditions for \(n \), under which \(M_n(R) \) is a Schur ring.

1. Introduction

Let \(F \) be an algebraic number field with ring of algebraic integers \(R \) and let \(\pi = \{p_1, \ldots, p_t\} \) be a set of positive prime numbers. Assume that the \(I_i \) are maximal ideals of \(R \) such that \(p_i \in I_i, i = 1, \ldots, t \). Set

\[
L_\pi = \{ \frac{a}{b} | a, b \in R, b \notin I_i, i = 1, \ldots, t \}
\]

Then \(R_\pi \) denotes a localization
of R at L_{π}. Thus R_{π} is a principal ideal having quotient field of characteristic zero and containing a unique prime ideal I_i such that $p_i \in I_i$, $i = 1, \ldots, t$. We denote the Jacobson radical of R_{π} be $J(R_{\pi})$. Therefore, the residue ring $K = R_{\pi} / J(R_{\pi})$ is a semi-simple ring of characteristic $m = \prod_{i=1}^{t} p_i$. Thus, we may write

$$K = \bigoplus_{i=1}^{t} k_i,$$

where the k_i are fields of characteristic $p_i (i = 1, \ldots, t)$. Let G be a finite group. Then we have

$$KG = \bigoplus_{i=1}^{t} k_i G.$$ \hspace{1cm} (1.2)

From (1.2), it follows that

$$1 = f_1 + \cdots + f_t,$$

where the f_i are orthogonal central idempotents in KG. Therefore,

$$KG = \bigoplus_{i=1}^{t} k_i G$$

$$= \bigoplus_{i=1}^{t} KGf_i,$$

with $k_i G = KGf_i$.

Now, R_{π} is a Hausdorff space in its $J(R_{\pi})$-topology, i.e., that $\bigcap_{j=1}^{\infty} J(R)^j = (0)$, so the $J(R_{\pi})$-adic completion \hat{R}_{π} of R_{π} is a complete semi-local ring such that

$$K = \hat{R}_{\pi} / J(\hat{R}_{\pi}) = R_{\pi} / J(R_{\pi}),$$
and

\[\hat{R}_\pi = \hat{R}_{\pi 1} \oplus \cdots \oplus \hat{R}_{\pi t}, \quad (1.4) \]

where the \(\hat{R}_{\pi i} \) are complete local rings such that \(\hat{R}_\pi / J(\hat{R}_\pi) = k_i \).

Therefore

\[\hat{R}_\pi G = \hat{R}_{\pi 1}G \oplus \cdots \oplus \hat{R}_{\pi t}G. \quad (1.5) \]

From (1.5), we obtain

\[1 = \hat{f}_1 + \cdots + \hat{f}_t, \quad (1.6) \]

where the \(\hat{f}_i \) are orthogonal central idempotents in \(\hat{R}_\pi G \).

In the study of the Schur subgroup of the Brauer group of a commutative ring \(R \), one is interested in finding the Azumaya algebras over \(R \) that are epimorphic images of a group ring \(RG \) for some finite group \(G \).

For a commutative ring \(R \), the matrix ring \(M_n(R) \) of the \(n \times n \)-matrices over \(R \) is called a Schur ring if there exists a finite group \(G \leq GL_n(R) \) such that the \(R \)-span of \(G \) is just \(M_n(R) \), i.e., in such case we have \(\langle G \rangle_R = M_n(R) \).

Let \(R \) be a ring of algebraic integers of an algebraic number field \(F \) and let \(G \leq GL_n(R) \) be a finite group. In [11], it was proved that \(\langle G \rangle_R = M_n(R) \) if and only if \(R^n \) is globally irreducible, i.e., the Brauer reduction of \(R^n \) modulo every prime is absolutely irreducible. In this paper, we show that \(\langle G \rangle_R = M_n(R) \) if and only if the Brauer reduction of \(R^n \) modulo a finite number of primes is absolutely irreducible. Moreover, we give conditions for \(n \), under which \(M_n(R) \) is a Schur ring.
2. Preliminary Results

Definition 2.1. Let \mathbb{C} denote the field of complex numbers and $G \leq GL_n(\mathbb{C})$. We call G globally irreducible if for every prime p the reduction of \mathbb{C}^n modulo p is absolutely irreducible.

Let G be a finite group, p be a prime divisor of $|G|$, and R be a complete discrete valuation ring with quotient field F of characteristic 0. We assume that the residue field $k = R / J(R)$ has characteristic p, where $J(R)$ denotes the Jacobson radical of R. With this assumption, we refer to the triple $(F; R; k)$ as a splitting p-modular system.

Recall that the Brauer reduction of a modulo for a natural prime p is defined as follows. If V is a FG-module, then there exists a full RG-lattice $L \subseteq V$. The kG-module $L / J(R)L = U$ is called a reduction of V modulo p. Moreover, in such case, we say also that U is the reduction modulo p of the RG-lattice L.

According to Definition 2.1, the linear group G is globally irreducible if for every prime p the reduction of \mathbb{C}^n modulo p is absolutely irreducible. We know that in such case is sufficient the study of the reduction modulo p, for every prime p divisor of $|G|$. Therefore, result evident the necessity of to study the following problem:

Problem 2.2.

When the reduction modulo p of the an absolutely irreducible FG-module V is an absolutely irreducible kG-module, being k a field of characteristic p?

3. Some Properties of Certain Induced Modules

Let G be a finite group with splitting field k, and let Q be a p-subgroup of G. Assume that $s = |G : Q|$ and let $X^+ = \{x_1, \ldots, x_s\}$ be a full set of representatives in G of the cosets in G / Q. Then $Ind_Q^G(k)$ is isomorphic to kGQ^+ as left kG-module, where $Q^+ = \{ \sum_{x \in X^+} ax \in kG\}$.
Set $X = \{x_i - x_j, y \in Q\}$. We denote the left ideal generated by X in kG by $I_Q(G)$. We claim that

\[
\text{rank}_k(I_Q(G)) = |G : Q|(|Q| - 1)
\]

\[
= |G : P|\frac{|P|}{|Q|}(|Q| - 1).
\]

Thus, we have

\[
kG / I_Q(G) \cong kGQ^+,
\]

as k-modules. We now assume that $Q < Q'$, where Q' is also a p-subgroup of G. Set $X^Q_Q = \{x_i - x_j, x_j = yxy', y \in Q$ and $y' \in Q'\}$.

Then $kG / I_Q(G)$ contains a left ideal isomorphic to the left ideal generated by X^Q_Q. We denote this ideal by I^Q_Q. Observe that

\[
\text{rank}_k(I^Q_Q) = |G : P|\frac{|P|}{|Q|}(|Q| - 1).
\]

Let us write T_Q by $kG / I_Q(G)$. Thus we have

\[
T_Q / I^Q_Q \cong kGQ^+.
\]

It is well know that

\[
kG = \bigoplus_{j=1}^r F^\dim S_j,
\]

where P_{S_j} is the projective cover of the simple kG-module S_j and r is the number of conjugacy classes of p-regular elements of G.

From (3.9), the following holds:

\[
kGQ^+ = \bigoplus_{j=1}^r M^Q_j,
\]

where $M^Q_j = F^\dim S_j / F^\dim S_j I_Q(G)$.
The following two lemmas are easy but useful to our results:

Lemma 3.3. Let G be a finite group with splitting field k of characteristic p. Fixed $P \in \text{Syl}_p(G)$. Then $I_P(G)$ is an annihilator of the trivial kG-module.

Proof. Since for all finite group G, the trivial module is a $kG / I_P(G)$-module, the assertion follows. □

Lemma 3.4. Let G be a finite group with splitting field k of characteristic p. Fixed $P \in \text{Syl}_p(G)$. We denote the Jacobson radical of kG by $J(G)$. Then $J(G) \subseteq I_P(G)$ if and only if $kG / I_P(G)$ is semisimple.

Proof. Since every indecomposable kG-module, direct summand of $kG / I_P(G)$, is annihilated by $I_P(G)$, the result follows.

The converse implication is trivial. □

Lemma 3.5. Let G be a finite group with splitting field k of characteristic p, and let S be a simple kG-module. Set $P \in \text{Syl}_p(G)$ fixed. Then M_P^j is a projective kG-module if and only if P_{S_j} is a blocks of defect zero.

Proof. Let $J(G)$ be the Jacobson radical of kG. We to check two cases.

Case 1. $J(G) \subseteq I_P(G)$.

In this case, the assertion follows by Lemma 3.4.

Case 2. $J(G) \not\subseteq I_P(G)$.

Assume that $M_P^Q \cong P_{S_j}^l$ is a projective kG-module, where l is the multiplicity of P_{S_j} as direct summand of M_P^Q. We show that P_{S_j} is a simple kG-module.
Since $I_P(G)$ is left ideal of $\mathcal{k}G$ from (3.9) is follows that
\[I_P(G) = P_{S_1}^{\dim S_1} I_P(G) \oplus \cdots \oplus P_{S_r}^{\dim S_r} I_P(G). \tag{3.11} \]

We have $P_j I_P(G) = 0$ by assumption, so we deduce that $P_{S_j}^{\dim S_j} I_P(G)$ is a projective $\mathcal{k}G$-module, where the multiplicity of P_{S_j} is equal to $\dim(S_j) - l$, i.e., we have
\[P_{S_j}^{\dim S_j} I_P(G) = P_{S_j}^{\dim S_j - l}. \]

Therefore, we may assert that $P_{S_j} I_P(G)$ is a right indecomposable $I_P(G)$-module such that
\[(P_{S_j} I_P(G))^{\dim S_j} = P_{S_j}^{\dim S_j - l}. \tag{3.12} \]

We assume that $\alpha = \dim(P_{S_j} I_P(G))$ and $\beta = \dim(P_{S_j})$. According to (3.12), we may write the following equality:
\[\alpha \dim(S_j) = \beta(\dim(S_j) - l). \tag{3.13} \]

From (3.13), it follows that
\[\frac{\alpha}{\dim(S_j) - l} = \frac{\beta}{\dim S_j}. \tag{3.14} \]

We now claim that the Equality (3.14) is true if and only if $\frac{\alpha}{\dim(S_j) - l} = \frac{\beta}{\dim S_j} = 1$. Thus, the following holds $\dim S_j = \dim P_{S_j}$, which is what we need to prove.

Conversely, by assumption it follows that
\[P_{S_j}^{\dim S_j} I_P(G) = (P_{S_j} I_P(G))^{\dim S_j} \tag{3.15} \]
where \(\dim(P_{S_j} I_P(G)) = \dim(S_j) - l \) with \(l = \dim S_{jp'} \), being \(\dim S_{jp'} \)
the \(p' \)-part of \(\dim S_j \). Thus, we deduce that \(P_{S_j}^{\dim S_j} I_P(G) = P_{S_j}^{\dim(S_j)-l} \).

So we are done.

\[\square \]

Lemma 3.6. Let \(G \) be a finite group with splitting field \(k \) of characteristic \(p \) and let \(P \in \text{Syl}_p(G) \) fixed. Then every indecomposable \(kG \)-module direct summand of \(kGP^+ \) has a radical vertex.

Proof. Let \(N_G(P) \) be the normalizer of \(P \). According to the Green correspondence, every indecomposable \(kG \)-module direct summand of \(kGP^+ \cong \text{Ind}_P^{N_G(P)} \text{Ind}_G^{N_G(P)}(k) \) has vertex \(P \) or a vertex in \(P \cap P^g, \)
g \(\in G - N_G(P) \). Observe that if \(P \) is a normal subgroup of \(G \), then \(kGP^+ \)
is semi-simple, so every indecomposable \(kG \)-module direct summand of \(kGP^+ \) is a simple \(kP \)-module with vertex \(P \). Therefore, we now consider the case where \(P \) is not a normal subgroup of \(G \). Assume that \(U \) is an indecomposable \(kG \)-module with vertex \(Q \leq P \), being \(U \) a direct summand of \(kGP^+ \). We to check two cases.

- **Case 1.** \(Q = 1 \) or \(Q = P \).

The assertion results trivially by assumption.

- **Case 2.** \(1 < Q < P \).

In this case \(Q = P \cap P^g \), for some \(g \in G - N_G(P) \). Let \(N_P(Q) \) be the normalizer of \(Q \) in the Sylow \(p \)-subgroup \(P \). Since \(P \cap N_G(Q) = N_P(Q) \) and \(P^g \cap N_G(Q) = N_P^g(Q) \) are Sylow \(p \)-subgroups of \(N_G(Q) \), we deduce that \(g \in N_G(Q) - N_P(Q) \). We now shows that \(N_P(Q) \) is not a normal subgroup of \(N_G(Q) \).
Let us write \(P \) for \(N_p(Q) \). Conversely, we assume that \(P \) is a normal subgroup of \(N_G(Q) \). In such case \(P = P \cap P^G = Q \), which is a contradiction. Now, since \(Q = P \cap P^G \) is follows that
\[
Q \supseteq O_p(N_G(Q)).
\]
But on the other hand, \(Q \) is a normal \(p \)-subgroup of \(N_G(Q) \), and so is contained in \(O_p(N_G(Q)) \). Thus we have equality.

\[\square\]

Many of the properties of the \(kG \)-modules with trivial source was studied by several authors. In particular, Okuyama’s obtained the following results (see [9]).

Lemma 3.7. Let \(S \) be a simple \(kG \)-module with vertex \(Q \) and trivial source. Then the Green correspondent \(f(S) \) of \(S \) is a simple projective \(k[N_G(Q)/Q] \)-module.

Lemma 3.8. Let \(S \) be a simple \(kG \)-module with vertex \(Q \) and trivial source. Then the \(p \)-part of \(\dim S \) is equal to \(\frac{|P|}{[Q]} \), where \(P \in \text{Syl}_p(G) \).

Alperin’s obtained the following result (see [1]):

Lemma 3.9. Let \(P \) be a Sylow \(p \)-subgroup of \(G \). If \(W \) is a simple projective \(k[N_G(Q)/Q] \)-module, then its Green correspondent of \(W \) is isomorphic to an indecomposable direct summand of \(kGP^+ \).

4. **\(G \)-Weight and Main Proprieties**

In the rest of this paper, we will assume the notations and terminologies used in the last section.
Lemma 4.10. Let G be a finite group, k be a splitting field for G, and $Q \neq 1$ be a radical p-subgroup of G. If M_j^Q has an indecomposable non-projective kG-module as direct summand, then it is unique, up to isomorphism.

Proof. By the Krull-Schmidt theorem, each left kG-module M_j^Q can be decomposed of unique manner as a direct sum of indecomposable kG-modules, i.e., we may write

$$M_j^Q = \bigoplus_{\gamma=1}^{\mu} U_{\gamma},$$

where the U_{γ} are indecomposable kG-modules.

We now assume that U_{γ} is direct summand in (4.16), which is an indecomposable non-projective kG-module. Firstly, we show that P_{S_j} is the projective cover of U_{γ}.

Since $P_{S_j} / \text{Rad}(P_{S_j}) \cong U_{\gamma} / \text{Rad}(U_{\gamma}) \cong S_j$, we deduce that there is an epimorphism $P_{S_j} \rightarrow U_{\gamma}$, which necessarily is essential by Nakayama's lemma.

We now show that U_{γ} is unique, up to isomorphism.

Suppose that $U_{\gamma'}$ is other indecomposable non-projective kG-module in the decomposition (4.16). Since P_{S_j} is projective cover of U_{γ} and $U_{\gamma'}$ we assert that there are two essential epimorphisms $\theta_1 : P_{S_j} \rightarrow U_{\gamma}$ and $\theta_2 : P_{S_j} \rightarrow U_{\gamma'}$. We define the epimorphism $\sigma : U_{\gamma} \rightarrow U_{\gamma'}$ given by $\sigma(\theta_1(a)) = \theta_2(a), a \in P_{S_j}$. Let $\Omega(U_{\gamma})$ and $\Omega(U_{\gamma'})$ be the Heller operators of U_{γ} and $U_{\gamma'}$, respectively. Then we may write

$$\ker \sigma = \{ \theta_1(a) \in U_{\gamma} : a \in \Omega(U_{\gamma'}) \}. $$
Thus we may assert that $\ker \sigma \cong \Omega(U_\gamma)$ by assumption. Hence, we have

$$P_{S_j} / \Omega(U_\gamma) \cong U_\gamma / \ker \sigma \cong U_{\gamma'}.$$ \hspace{1cm} (4.17)

We claim that the relation (4.17) is true if and only if $P_{S_j} \cong U_\gamma$ or $\ker \sigma = 0$. By assumption, we may deduce that the unique case possible is $\ker \sigma = 0$. Therefore $U_\gamma \cong U_{\gamma'}$, which is what we need to prove. \hfill \Box

According to the Lemmas 3.5 and 4.10 takes place the following definition:

Definition 4.11. A G-weight for G is a pair (U, Q), where U is a direct summand of kGP^+ with vertex Q, which is simple or an indecomposable non-projective kG-module.

The following theorem is fundamental in our investigation.

Theorem 4.12. Let G be a finite group with splitting field k of characteristic p. Then the number of non-isomorphic G-weights equals the number of conjugacy classes of p-regular elements of G.

Proof. From (3.10), we have

$$kGP^+ = \bigoplus_{j=1}^{r} M_j^P,$$ \hspace{1cm} (4.18)

where r is the number of conjugacy classes of p-regular elements of G and the M_j^P are left kG-modules such that

$$M_j^P \cong P_{S_j}^{\dim S_j} / P_{S_j}^{\dim S_j} I_P(G),$$

for some simple kG-module S_j.

We check two cases.

Case 1. M_j^P is projective.

In such case we have $M_j^P = \oplus P_{S_j}$. According to Lemma 3.5, we obtain $P_{S_j} \cong S_j$. Therefore, the assertion follows by assumption.
Case 2. M_j^P is not projective.

If M_j^P is not projective, then has a unique indecomposable non-projective kG-module as direct summand, by Lemma 4.10. Thus the result follows by assumption.

5. Conditions for the Reducibility Modulo p of an Irreducible Brauer p-Character

Let G be a finite group, p be a prime divisor of $|G|$, and R be a complete discrete valuation ring with quotient field F of characteristic 0. We assume that the residue field $k = R / J(R)$ has characteristic p, where $J(R)$ denotes the Jacobson radical of R. With this assumption, we refer to the triple $(F; R; k)$ as a splitting p-modular system.

Lemma 5.13. Let G be a finite group and k be a splitting field for G. Let $U_1, ..., U_r$ be a complete list of non-isomorphic G-weights, with projective covers $P_{S_1}, ..., P_{S_r}$, respectively. Then the Brauer characters $\phi_{U_1}, ..., \phi_{U_r}$ of the G-weights form a basis in the space $\mathbb{C}^{p-\text{reg}(G)}$ of class functions on the p-regular elements of G.

Proof. Everything follows from the formula

$$
\tau = \langle \phi_{P_{S_i}}, \phi_{U_j} \rangle = \begin{cases}
\tau = 0, & \text{if } i \neq j; \\
\tau = 1, & \text{if } i = j \text{ and } U_j \cong S_i; \\
\tau > 1, & \text{if } i = j \text{ and } U_j \not\cong S_i,
\end{cases}
$$

and the fact that the number of non-isomorphic G-weights modules equals the number of p-regular conjugacy classes of G. Thus if $\sum_{i=1}^{r} \lambda_i \phi_{U_i} = 0$, we have $\langle \phi_{P_{S_i}}, \phi_{U_i} \rangle \lambda_i = 0$, so $\lambda_i = 0$, which shows that the are independent, and hence form a basis.

\qed
Theorem 5.14. Let \((F; R; k)\) be a splitting \(p\)-modular system for the finite group \(G\). The simple \(kG\)-module \(S\) is the reduction modulo \(p\) of an \(RG\)-lattice if and only if \(S\) is a \(G\)-weight.

Proof. Let \(S\) be a simple \(kG\)-module with projective cover \(P_S\), and let \(U_i\) be a \(G\)-weight such that \(U_i / \text{Rad}(U_i) \cong S\). Assume that \(S\) is the reduction modulo \(p\) of an \(RG\)-lattice. According to the Lemma 5.13, we may write

\[
\sum_{i=1}^{r} \lambda_i \phi_{U_i} = \phi_S. \tag{5.19}
\]

From (5.19), we may write

\[
\langle \phi_S, \phi_{U_i} \rangle \lambda_i = \langle \phi_S, \phi_S \rangle. \tag{5.20}
\]

Since \(S\) and \(U_i\) are liftable to one \(RG\)-lattice, and \(S\) is the radical quotient of \(U_i\), it follows that \(\langle \phi_S, \phi_{U_i} \rangle = \langle \phi_S, \phi_S \rangle\), so \(\lambda_i = 1\).

Conversely, since \(kGP^+\) is the reduction modulo \(p\) of the \(RG\)-lattice \(RGP^+\), the result follows.

Theorem 5.15. Let \(G\) be a finite group with \(P \in \text{Syl}_p(G)\) fixed, and let \(S\) be a simple \(kG\)-module with radical vertex \(Q\) and trivial source \(k\). Then \(S\) is a \(G\)-weight.

Proof. Combining the Lemmas 3.7 and 3.9, we deduce that \(S\) is a direct summand of \(kGP^+\). Therefore, by assumption, the assertion follows.

Combining the Theorems 5.14 and 5.15, we deduce the following result:

Corollary 5.16. Let \((F; R; k)\) be a splitting \(p\)-modular system for the finite group \(G\). The simple \(kG\)-module \(S\) has trivial source if and only if \(S\) is the reduction modulo \(p\) of an \(RG\)-lattice.
6. Schur Ring and Globally Simple Modules

Definition 6.17. Let R be a commutative ring and let $G \leq GL_n(R)$ be a finite group. Then the matrix ring $M_n(R)$ is called Schur ring (more briefly S-ring) if $(G)_R = M_n(R)$.

Lemma 6.18. Let k be a field of characteristic p and let $G \leq GL_n(k)$ be a finite group with splitting field k. Let us write U for k^n. Then U is a simple kG-module if and only if $(G)_k = M_n(k)$.

Proof. If U is a simple kG-module, then the assertion follows by Burnside’s theorem. Conversely, since $U^n \cong M_n(k)$ the result follows by assumption. □

Let G be a finite group, $\pi = \{p_1, \ldots, p_t\}$ be a finite set of prime numbers and R_π be a localization of R at L_π, where R is the ring of integers of F, being F the quotient field of R and splitting field of G. We assume that the residue field $K = R_\pi / J(R_\pi)$ has characteristic $m = \prod_{i=1}^{t} p_i$, where $J(R)$ denotes the Jacobson radical of R_π. With this assumption, we refer to the triple $(F; R; K)$ as a splitting π-modular system.

The reduction modulo π of an RG-module is defined as follows. If V is a RG-module, then there exists a full $R_\pi G$-lattice $\mathcal{L} \subseteq V$. The KG-module $\mathcal{L} / J(R)\mathcal{L} = U$ is called a reduction of V modulo π. Moreover, in such case, we say also that U is the reduction modulo π of the $R_\pi G$-lattice \mathcal{L}.

Let $G \leq GL_n(R)$ be a finite group. We consider the natural projection $\sigma : GL_n(R_\pi) \to GL_n(K)$. Then $\sigma(G) = \overline{G}$ is called reduction of G modulo π.
In such case, we way write
\[\overline{G} = \overline{G}_1 \otimes \cdots \otimes \overline{G}_t, \]
where \(\overline{G}_i(i = 1, \ldots, t) \) is the reduction of \(G \) modulo \(p_i \).

Definition 6.19. Let \((F, R, K)\) be an \(m \)-modular system, where \(\pi = \{p_1, \ldots, p_t\} \) is a set of prime numbers. Assume that \(G \leq GL_n(R) \) is a finite group. Let us write \(V \) for \(R^n \) and we write \(U \) for \(K^n \). Then \(V \) is called \(\pi \)-quasi-simple if each direct summand \(Uf_i \) is a simple \(\overline{G}_i \)-weight.

Lemma 6.20. Let \((F, R, K)\) be an \(m \)-modular system, and let \(G \leq GL_n(R) \) be a finite group. Let us write \(V \) for \(R^n \) and we write \(U \) for \(K^n \). Then \(\langle \overline{G} \rangle_K = M_n(K) \) if and only if \(V \) is \(\pi \)-quasi-simple.

Proof. We have
\[
\langle \overline{G} \rangle_K = \langle \overline{G} \rangle_K f_1 \oplus \cdots \oplus \langle \overline{G} \rangle_K f_t
\]
\[
= \langle \overline{G}_1 \rangle_{k_1} \oplus \cdots \oplus \langle \overline{G}_t \rangle_{k_t}
\]
\[
= M_n(k_1) \oplus \cdots \oplus M_n(k_t)
\]
\[
= M_n(K)f_1 \oplus \cdots \oplus M_n(K)f_t
\]
\[
= M_n(K).
\] (6.21)

From (6.21), it follows that \(\langle \overline{G}_i \rangle_{k_i} = M_n(k_i) \) for all \(i(1 \leq i \leq t) \). Therefore, applying the last lemma we assert that \(Uf_i \) is a simple \(k_i \overline{G}_i \)-module for every \(i \). Hence, by Theorem 5.14, the result follows. On the other hand, by assumption and applying again the Lemma 6.18, we deduce that \(\langle \overline{G}_i \rangle_{k_i} = M_n(k_i)(i = 1, \ldots, t) \). Therefore, the equality follows. \(\square \)
Definition 6.21. Let \((F, R, K)\) be a \(m\)-modular system, and let \(G \leq GL_n(R_{\pi})\) be a finite group. Assume that \(\pi\) is the set of the positive prime divisors of \(|G|\). If \(R^n\) is a \(\pi\)-quasi-simple, then we say that \(G\) is \(\pi\)-globally simple.

Lemma 6.22. Let \((F, R, K)\) be an \(m\)-modular system, and let \(G \leq GL_n(R)\) be a finite group. Assume that \(\pi\) is a set of the prime divisors of \(|G|\). Then \(\langle G \rangle_{R_{\pi}} = M_n(R_{\pi})\) if and only if \(G\) is \(\pi\)-globally simple.

Proof. By assumption, we may write
\[
\langle \overline{G} \rangle_K = M_n(K). \tag{6.22}
\]
Therefore, we may assert that \(R^n\) is \(\pi\)-quasi-simple by Lemma 6.20. Thus, by assumption, the result follows. On the other hand, by assumption and applying the Lemma 6.18, we obtain
\[
\langle \overline{G} \rangle_K = M_n(K). \tag{6.23}
\]
From (6.23), it follows that
\[
R_{\pi} \otimes_K \langle \overline{G} \rangle_K = R_{\pi} \otimes_K M_n(K).
\]
Since \(\langle G \rangle_{R_{\pi}} \cong R_{\pi} \otimes_K \langle \overline{G} \rangle_K\) and \(M_n(R_{\pi}) \cong R_{\pi} \otimes_K M_n(K)\) the assertion follows. \qed

Theorem 6.23. Let \(R\) be a ring of algebraic integers and let \(G \leq GL_n(R)\) be a finite group. Then \(\langle G \rangle_R = M_n(R)\) if and only if \(G\) is \(\pi\)-globally simple.

Proof. From \(\langle G \rangle_R = M_n(R)\), it follows that \(\langle G \rangle_{R_{\pi}} = M_n(R_{\pi})\).

Hence, the result follows by Lemma 6.22. Conversely, according to the Lemma 6.22, we have
\[
\langle G \rangle_{R_{\pi}} = M_n(R_{\pi}).
\]
Therefore, the assertion follows by assumption. \qed
Theorem 6.24. Let \(R \) be a ring of algebraic integers with quotient field \(F \) and let \(G \leq \text{GL}_n(R) \) be a finite group with splitting field \(F \). Assume that \(\pi = \{p_1, \ldots, p_t\} \) is the set of prime divisors of \(|G| \) and we denote the \(\pi \)-part of \(n \) by \(n_\pi \). If \(\langle G \rangle_R = M_n(R) \), then \(n_\pi = \prod_{i=1}^{t} \frac{|P_i|}{|Q_i|} \), where \(P_i \in \text{Syl}_{p_i}(G) \) and \(Q_i \) is the vertex of the \(k_iG \)-module \(K_n^i \).

Proof. According to Theorem 6.23, each \(K_n \) is a simple \(G \)-weight. Hence, the \(p_i \)-part of \(\dim K_n \) is \(\frac{|P_i|}{|Q_i|} \) by Lemma 3.8. Since \(n = \dim R^n = \dim K_n = \dim K_n^i (i = 1, \ldots, t) \) the assertion follows.

Theorem 6.25. Let \(R \) be a ring of algebraic integers with quotient field \(F \) and let \(G \) be a finite group with splitting field \(F \). Assume that \(\pi = \{p_1, \ldots, p_t\} \) is the set of prime divisors of \(|G| \), and \(H \) is a \(\pi \)-subgroup of \(G \) such that \(N_G(Q_i) \leq H \), where \(Q_i \in \text{Syl}_{p_i}(H) (i = 1, \ldots, t) \). If \(\text{Ind}_H^G(R) \) is a simple \(FG \)-module, then \(M_n(R) \) is an \(S \)-ring, for \(n = \frac{|G|}{|H|} \).

Proof. Let \(U \) be the reduction modulo \(\pi \) of \(\text{Ind}_H^G(R) \). Since \(Q_i \) is the vertex of the trivial \(k_iH \)-module we deduce that \(\text{Ind}_H^G(k_i) \cong Uf_i \) has vertex \(Q_i \) and trivial source. Therefore, we may assert that \(Uf_i \) is a \(G_i \)-weight for all \(i = 1, \ldots, t \). Since \(Uf_i (i = 1, \ldots, t) \) is the reduction modulo \(p_i \) of the simple \(FG \)-module \(\text{Ind}_H^G(R) \) we deduce that \(Uf_i \) is a simple \(k_iG \)-module. Therefore, by assumption, we may assert that \(\text{Ind}_H^G(R) \) is \(\pi \)-globally simple. Since \(\dim \text{Ind}_H^G(R) = \frac{|G|}{|H|} \) the assertion follows by Theorem 6.23.
References

