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Abstract

In this paper, a new class of generalized distributions called the Exponentiated
Kumaraswamy Lindley (EKL) distribution is introduced. The new distribution
is a quite flexible model in analyzing positive data. We provide a comprehensive
mathematical treatment of the statistical properties of this distribution. Some
structural properties of the proposed new distribution are discussed including
probability density function and explicit forms for its survival function, hazard
function, and quantile function. The method of maximum likelihood is used to
estimate the model parameters and the observed and expected information
matrices are derived. A real data set is used to compare the new model with
widely known distributions. A simulation study is conducted and the mean, bias
and mean squared error of estimates are presented for different sample sizes.
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1. Introduction

In many fields of applied sciences such as medicine, engineering, and
finance amongst others, modelling and analyzing lifetime data are
crucial. Several lifetime distributions have been used to model such kinds
of data for instance the exponential, Weibull, gamma, Rayleigh
distributions and their generalizations (see, e.g., Gupta and Kundu [1,
2]). Each distribution has its own characteristics due specifically to the
shape of the failure rate function which may be only monotonically
decreasing or increasing or constant in its behaviour, as well as non-
monotone, being bathtub shaped or even unimodal. Lindley distribution
is important for studying stress-strength reliability modelling. Ghitany et
al. [3] discussed various properties of this distribution and showed that
the Lindley distribution provides a better model than the exponential
distribution in many ways. Sankaran [4] introduced the discrete Poisson-
Lindley distribution by combining the Poisson and Lindley distributions.
Mazucheli and Achcar [5] discussed the applications of Lindley
distribution to competing risks lifetime data. Ghitany and Al-Mutairi [6],
and Ghitany et al. [7] obtained size-biased and zero-truncated version of
Poisson-Lindley distribution and discussed their various properties and
applications. Bakouch et al. [8] obtained an extended Lindley distribution
and discussed its various properties and applications. Ghitany et al. [9]
developed a two-parameter weighted Lindley distribution and discussed
its applications to survival data. Ghitany and Al-Mutairi [10] discussed
various estimation methods for the discrete Poisson-Lindley distribution.
Rama and Mishra [11] studied quasi Lindley distribution. Ghitany et al.
[12] studied power Lindley distribution and associated inference.
Zakerzadah and Dolati [13] and Elbatal et al. [14] have obtained the
generalized Lindley distribution and the Kumaraswamy quasi Lindley
distribution, respectively, and discussed various properties and
applications. Cakmakyapan and Kadilar [15] have obtained the

Kumaraswamy Lindley distribution.



A NEW GENERALIZATION OF KUMARASWAMY ... 71

The Kumaraswamy distribution as defined by Kumaraswamy (1980)
in [16] is identified as an alternative to beta distribution because they
both have the same basic shape properties (unimodal, uniantimodal,
increasing, decreasing, monotone or constant). The probability density

function (pdf) of the Kumaraswamy distribution is given as follows:
f(x) = abx® 11 -2V 0<x <. (1)
The corresponding cumulative density function (cdf) is given as
Flx)=1-(1-x2%)°;, 0<=x<1, 2)
where a, b > 0 are shape parameters.

The pdf given in Equation (1) does not involve any incomplete beta
function ratio and it is regarded as being tractable because of its mild
algebraic properties. Jones [17] explored the background of this
distribution and discussed the advantages and disadvantages of this
distribution compared with the beta distribution. Cordeiro and Castro
[18] have proposed a generalization of the probability distribution, by
using (1) and (2). The density and distribution function of generalized

class given by Cordeiro and Castro have following forms:

f(x) = abg(x)G(x)* (1 - G(x)* 7", ®)
and
Flx)=1-(1-G)"), @
where g(x) = %fcx) and parameters a, b > 0 are shape parameters.

Cordeiro et al. [19] introduced the Kumaraswamy Weibull distribution.
Also, Bourguignon et al. [20] introduced the Kumaraswamy Pareto
distribution. Later, Paranaiba et al. [21] and Gomes et al. [22] introduced
the Kumaraswamy generalized Burr and Rayleigh distributions, followed
by the paper of de Pascoa et al. [23] where they introduced the

Kumaraswamy generalized gamma distribution.
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In this article, we present a new generalization of Lindley
distribution called the exponentiated Kumaraswamy Lindley (EKL)
distribution. The study examines various properties of the new model.
The rest of the paper is organized as follows: In Section 2, we define the
generalization of the EKL distribution. The probability density function
and cumulative distribution are given. Quantile function, moments, and
moment generating function are discussed in Section 3. Renyi and
Shannon entropies are calculated in Section 4. In Section 5, we discuss
maximum likelihood estimation and determine the elements of the
observed information matrix and expected Fisher information matrix.
Section 6 provides an application to a real data set and a simulation

study is presented. Section 7 ends the paper with some conclusions.

2. Exponentiated Kumaraswamy Lindley
(EKL) Distribution

In this section, we introduce the exponentiated Kumaraswamy
Lindley (EKL) distribution. The cumulative distribution function (cdf) of
the Lindley distribution, as introduced by Lindley [24], is given by

0x

_ 1 _ ,—bx
Gx)=1-e [1+9+1

l, x>0,0>0. (6))

Using (5) in (4), we obtain the cdf of the Kumaraswamy Lindley (KL)
distribution. The study of exponentiated distributions is useful in
statistics, as indicated by Mudholkar and Srivastava [25] for a very
important reason: It provides methods of extending distributions for

added flexibility in fitting data. For a baseline cdf G(x), the

exponentiated distribution F(x) = G(x)a, where the exponentiation

parameter & > 0 gives the flexibility to accommodate both monotone and
non-monotone hazard rate functions. Nassar and Eissa [26, 27] and many
authors studied the various properties of the exponentiated distributions.
In this paper, we consider the EKL with probability density function (pdf)
given by
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fexr(x) = abe (eeflj 1+ x)e—ex(l _ e—Ox[l . eeleal
AL
pooerfl)
L1b71¢!
S

Using the generalized binomial theorem, if B = n is a natural number,

the series is given by
B (B o
(1-2)P = Z (-1)2. (7.2)
i=0\1

If B is neither a natural number nor zero, the series converges absolutely
for |z <1 and diverges for |z| > 1, (see Gradshteyn and Ryzhik [28]). In

this case, the series is written using the following infinite sum:

0 B o
1-2)P = ZU(— 1)z (7.b)

1=0\1

The EKL pdf can be rewritten, for a, b, ¢ non-integers, as follows:

fegr(x) = ji;(— 1){0 ; 1} abc [eejlj 1+ x)efex(l s [1 ) %Da_l
; {1 ) (1 - e_ex[l + % Da}b(jﬂ)_l_
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Since
o b(+1)-1 o b(j+1)-1
—0x Ox _ _ k
{1—(1—e [HGHD} _Z( 1)( ]
k=0 k
—ox ox \*
(e )"
we get

» . c—1\(b(j+1)-1\(alk +1)-1\(1
ORI VS I e B

j ok, 1,m=0 J k [ m

e(m+2)

X m (]. + x)e_e(l+1)xxm.
+

This EKL pdf can be written in the form

fEL (%) = Wy (1 + x)e O m, ()
where
o _ c—-1\(b(j+1)-1\(alk +1)-1\( I
J,k,l,m=0 ] k ] m
e(m+2)

X — 9
(0 + 1)V ©

Also, the cumulative distribution function (cdf) of the EKL is given by

bC‘
a
FEKL(x):ll—{l—(l—eex[lJreele } ] ,a>0,b6>0,¢c>0,06>0.

(10)
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Figure 1. Plots of the pdf of the EKL for selected values of the

parameters.

Figures 1 and 2 are the plots of the pdf and cdf of the EKL for
different values of the parameters. It is obvious from the displayed plots
in Figure 1 that pdf of the EKL distribution is unimodal for all values of
the parameters, skewed to the right, and for 6 <1 the graph expands
while for 6 > 1 the graph diminishes. Also, for increasing values of b, the

graph has a higher mode peak.
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Figure 2. Plots of the cdf of EKL for selected values of the parameters.
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The survival (reliability) function of the EKL, is defined as

Spxr(x) =1- Fggr(x) =1- [1 - {1 - (1 - e‘ex{l + %Da}br (11)

Now, the hazard rate function of the EKL is given by

hgkr(x) = 1o F(x) _f(;zx)

= W g (1 + x)e_e(l+1)xxm x S;E}{L (x). (12)
In Figure 3, the shape of the hazard rate function can be observed
from the following various plots of the hazard rate function for different

values of the parameters.
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Figure 3. Plots of the hazard rate of EKL for selected

parameters.
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Note that the EKL distribution has several well-known models as
special cases, which make it of distinguishable scientific importance from

other distributions.

e If a=b=c=1, then Equation (6) reduces to the Lindley

distribution.

e If a=b=c=1, then Equation (10) reduces to the gamma

distribution with parameters (2, 0).
o If ¢ =1, we get the Kumaraswamy Lindley distribution.

The graphs of the hazard function for several combinations of the
parameters represent various shapes including monotonically increasing,
monotonically decreasing, bathtub and up-side down bathtub shapes.
This attractive flexibility makes EKL hazard rate function useful and
suitable for nonmonotone empirical hazard behaviours, which are more

likely to be encountered or observed in real life situations.
3. Basic Properties of the Distribution

In this section, we study some basic properties of EKL distribution,
specifically the quantile function, moments, and moment generating

function.
3.1. Quantile function

Theorem 1. The quantile function of EKL distribution is at the

following approximate point:

/p\L/a
Xzeezl(l—(l—(u)“c)l j . (13)

Proof. If F(x) is continuous and strictly increasing, then the quantile

function Q(x) = F1(u), u € (0, 1) can be straightforward computed by

inverting (10) to obtain
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/b 1/a
e‘ex[u66f1}=1—(1—(1—(u)“‘")1 ) : 14)
J
Using the Taylor series expansion given by e = Zjoz 0 (w]c‘) , an
approximate quantile function of the EKL distribution is given by (13).
In particular, the median of the EKL distribution is given by
/b 1/a
median(x) ~ eezl (1 - (1 -/ 2)1/0)1 ) . (15)

The random sample can also be easily generated from (14) by taking U as

a uniform random variable in (0, 1).

3.2. Moments

Many of the interesting characteristics and features of a distribution
can be studied through its moments (e.g., tendency, dispersion, skewness,
and kurtosis). Moments are necessary and important in any statistical
analysis, especially in applications. The following theorem gives the
moments of the EKL distribution.

Theorem 2. If X~EKL, then the r-th non-central moment of the EKL
distribution is given by the following:

C(r+m+1) L(r+m+2)
(G(Z " 1))(7‘+m+1) (9(1 i 1))(r+m+2) ’

wr(x) = BE(X") = wjklm{ (16)

where w ., is given by Equation (9).

Proof. Using the pdf given in Equation (8),

0 0

wh(x)=EX") = Ixrf(x)dx = J.xrwjklme_e(lﬂ)xxm(l + x)dx.
0 0
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Therefore,

0

b () = i [ €757 (L )0 D
0

0 0
= Wjm J‘xr+me—6(l+1)xdx n J.xr+m+le—9(l+1)xdx )
0 0

Hence, we obtain the result given by Equation (16).
3.3. Moment generating function

In this subsection, we derive the moment generating function of EKL

distribution.

Theorem 3. If X ~ EKL, the moment generating function of X is then

given as

[(m+1) N C(m + 2)

) 17
Ol +1)- t)(m”) 0@ +1)- t)(m+2) 7

Mx (t) = Wikim

where wigy, is given by Equation (9).

Proof. We start with the well-known definition of the moment

generating function and using the pdf form in Equation (8)

0

M (0) = B(e") = [ " fug (x)dx
0

o0

= jklmjxm(l + x)e_x[e(l+1)—t]dx
0

[(m+1) N r'(m + 2)
01 +1) - )™ (01 +1) - £)m+2) |

= ijlm|:

which completes the proof.
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4. Entropy

An entropy of a random variable X is a measure of variation of the
uncertainty. A popular entropy measure is Rényi entropy [29]. If X has
the pdf f(.), then Rényi entropy is defined by

~ 1
3a) = o [ 7160, a8)
here y > 0 and y # 1. Suppose X ~ EKL. Setting
A= (1 - e“’x[1 L D (19)
B 0+1])

then one can calculate

0+1
_(abcesz i (by—vJ{cy—YHij
Tl e+l ) | < . .
i,7,k=0 14 ] k
« (_ 1)i+j+kJ.(1 4 x)ye—eyany—y+ai+akdx
:[abcesz Z-o: by —v\(ey —v\(bi\(aly +i+k)-y
O+1 i, J,k,1=0 i Jj k l
2 l
ikl v _—Oyx_—0lx 0x
x (=1) ‘([(1+x)e e (1+6+1)dx

abeo? Y © by —y\(cv —v aly +i+k)—vy
S IR O B Y
i,j,k,l,m,n=0 1

v\(! L. n%
x{ J[ J(_l)z+1+k+l(e+1) J'xm+n —6(y+1)x g,
0

m)\n

j £1(x) = (abcez ]y j (1+ %) e O AT=1(1 — A9 Y[1 — (1 - A% "V dx
0
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[achQJY i {bv—vj{cv—q[bjj[a(wiw)—v}
O+1 i,j,k,l,m,n=0\_ 1 j k l

v(! o n[ T
y  \i+j+k+l( O (m+n+1)
[mJ [n]( Y (e - 1) {(B(Y + l))(mm“)}‘

Therefore, one obtain the Rényi entropy as

~ 1 abco?
Jr(y) = 1_Y10g 011

1 o by —y\(ey —v\(bi\(aly +i+k)—y
+1_ log Z
Yok D=0\ i j k l

v\ (! .. T 1
v Ntk (m+n+1) .
o) et

Now, Shannon entropy [30] defined by E[-log f(x)] is the particular case

(20)

N —

of Equation (18) as vy T 1. From Equation (6) and (19),

abco?
0+1

E[-log f(x)] = - log( ] — E[log(1 + X)]+ 0E(X) - (a — 1)E[log(A)]

~ (b-1E[log(1 - A*)] - (c - DE[ log(1 - (1 - A*)")].

Using the series expansion defined in Equation (7.b) and

P 1
log(l—z):—ZZT,—1<z<1, 21)
=1

E[log(A)] = —i i% ( 5 3 1)s[r]E(Xse‘9’x ),
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E[log(1 - A%)] = E[— i (4® )t]

ii{at]( tl)r U(eilj B(Xe),

t=1r,s=0

)bu 1

S - bu)(at t+r (T s
= — (— 1) 0 E Xse—erx ,
;t,go{tlr} u [s (e+1) ( )

0

E[- log f(x)] = — 1og(“eb+912J - Ellog(t + X))+ 0E(X) + (a - 1> D (e > ljs
r=1s=0

o0

SE e

r S

bu\(at t+r (T s
He-1Y 12”30[ M ] 13 U(eﬁlj E(X%e %), (22)

Now,

[]E(Xs er) (b 1)§:

- C(m +2) T'(m + 3)
= ”’”[(e(z D™ (o1 + 1»("“3)}’

2, xn © ()
st + 01 - 35| v, 3N
n=1

n=1

X{ r(m+n+1) N L(m +n+2)
(e(l 4 1))(m+n+l) (e(l 4 1))(m+n+2) ’
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C(m+s+1) N C(m +s+2)

E(XT —Orxy _ ,
(K7 )= 01 +r+ 1))(m+s+l) O +r+ 1))(m+s+2)

Jkim
where Wikim is given by Equation (9).

5. Estimation of the Parameters

Here, we consider estimating the parameters of the EKL distribution
by the method of maximum likelihood and provide expressions for the

associated expected information matrix. Suppose Xj, X9, ..., X,, is a
random sample from EKL(E), where £ = (a, b, ¢, 0). The log likelihood

function of the parameters is given by

¢ =logL =nloga+nlogb+nlogc+2nlog6—nlog(d+1)
n n n n

+ nga +x;) - Oin +(a- 1)Zlog(A) +(b- 1)Zlog(1 — A%)
i=1 =1 =1 i=1

#(e=1)) loglt - (1 - 4%)], 23)
i=1

where A is defined in Equation (19).

The components of the score vector (&) = (8¢ /da, o¢ /b, ot Jéc, o¢ /60 )T

are obtained by differentiating Equation (23) with respect to the different

parameters. Thus, we have

dlogL n. A%log A B n(l—A“)b_lAalogA'
o=l LzlllogA) (b- 1)Z—A +(c 1); asap]

olo L_n a (1- Aa)blo 1-4%)
ag -z Zlog(l—A) (c - 1); T ia)b] ;

mggL Zlog[l (1- A%Y];



A NEW GENERALIZATION OF KUMARASWAMY ...

dlogL  2n ~ AYA
- e Zx +(a- 1)2_ alb - 1)21 e

able (1 Aa)b—lAa—lA,
e UZ‘ [1-(1-4a%P]

where A = 0A /00 = xie_exi 1+ﬂ_;2 )

89

(24)

By equating each of the four equations to zero, the maximum

likelihood estimates (MLEs) of the parameters are the solution of this

system of nonlinear equations, which are solved iteratively. The observed

information matrix given by

Jn(&) == ’

L J6a Jop Joc Jop |

where

_ A% log? A be - - (1-4%)Y7A4% og? A
B DYy L) Y ey

aa T T T

x [1 S(1- A% —(b-1)A%(1 - A%) —(1- A% )P A,

qu AN A% 10g A1 - (1- A%) + blog(l - A°)].
o1 [1-(1-A4)P
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n
N A A% 1A 1-A% +alog A]
h Z 0 - (b~ 1)2 A9

=1 )

1_ AablAa 1A'
bc - 1);( — (1)_Aa)b]

x[1+alogA-ab-1)(1-A%) " A%log A - (1- A%) —a(1 - A%)°

xlog A - a(l- A% A%log A];

O (1-A4%) log?(1 - AY)
; [1-(1-A4%PP

n
Jbp =—b—2—(C—1)

(=47 log(1 - AY).
Yo = 21 [1-(1-4%)]

n —
A 1A' (1-A*Y AT AL - (1- A%) +blog(1- A%)]

Jpp =-a -1) ;

Z‘ Z [L-(-a%)P
Jopo = -1

cc 02
n b-1 -1 4
1- A% 1a971g

Jep = abz( ) —_ =

= [1-(1-4%)]

2n AA" A - 1
Jog = — 2 4 t(a-1) —ab-ny — L

02 (e+1) Z ;[1—,4“]2

% [Aa—lA/y _ AZa—lA/r + (a _ 1)Aa—2A/2 + A2&—2A/2]+ ab(C _ 1)

n a-1 a\b-1
Zﬁ ((11 - fa )33 glar-a-an YA"+(@-1ATA? ~(a-1)
i=1 T

(1 _ Aa )bAa—ZArZ _ a(b _ l)Aa—l(l _ Aa )—1 A,Z _ aAa—l(l _ Aa )b—lAr2 ],

0A'

here A" = —.
where 0
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Applying the usual large sample approximation, the ML estimates

¢ = (4, b, ¢, 0) can be treated as being approximately N, (&, I,7}(¢)),
where I, (&) = E[J,,(€)] under conditions that are fulfilled for parameters

in the interior of the parameter space but not on the boundary. The

asymptotic distribution vn(€ - &) - N, (0, I,7}(¢)).

Approximate two sided (1 — o) % confidence intervals for a, b, ¢, and 0,

respectively, given by

diza/QVI(;é(é)’ biz(x/QVlgl}(a)’ éiZot/Z I(?cl a)’

where z, is the upper 100 a-th percentile of the standard normal

distribution.
The elements of the expected Fisher information matrix are

n o © © c-1
_52bgL]:;;+{1bdb—D§:§:§:§:F1y[

2 a
oa i1 j=0 k=1 11

_ [%bZC(C EDHHHIE l)j[c ; 3J(k 1

}B(Z,b+bj+k+l—2)}
J

g

i=1 j=0 k=1 =1
B2, 26 +bj +k+1+1)-P(2,3b+bj +k+1-1)

-(b-1)B(3, 2b+bj +k+1-2)-B(3, 3b+bj+k+l—2)}1,

02 log L 1, Ve (¢=1n .
E[—ﬁ) _ —Ebc;;;(—ly[ j J(ZJB(Q’ bebj+n-1)
n o o .c—3 1 '
_{—bc(c—l)zz ( 1)1[ . ]{—(EJB(2,2b+b]+k—1)
1=1 j=0k=1 ]

0

1

+(%)B(2, 3b+bj+k-2)+2(k+ljﬁ(k+2, 2b+bj+l—1)H,

=1
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Lim+2)

c—2

1SSy

J

St

J(%)B(Z 2b +bj + k-1),

)j+k+l

(0 + 2))\™*2)

Lim+3)

y— J
(6(1 + 2))+3)

63
"0y [

|

1

92

O+ 2™ (o

1H(m+2)

T(m+a) J}
1+2)m+)

©+1)>3

|

b(j+1)-1
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1
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+{(b s [b(]+2)+n 3J a(k+l3)—2](%)}
LU
+{n {b(]+3)+n zj{a(mz) 2 (%)}

L

2 © e .
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ot )
ol )
o e )
el J
fol

202

(m + 3) . I'(m + 4)
©+1)>

0 +3)™ (ot + 3))"*Y)

203 [(m + 4) N I'(m +5) J}
0 +1)2 L6 + 3)™)  (0(1 + 3))"+D) )]

6. Numerical Application

In this section, we illustrate the usefulness of the EKL distribution.
6.1. Numerical example

A real data set 1s used to show that the EKL distribution can be a
better model than the Lindley distribution.

The data set given in Table 1 represents an uncensored data set
corresponding to remission times (in months) of a random sample of 128

bladder cancer patients reported in Lee and Wang [31].
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Table 1. The remission times (in months) of bladder cancer patients

0.08 | 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23
0.52 | 4.98 6.97 9.02 | 13.29 | 0.40 2.26 3.57 5.06 7.09
0.22 | 13.80 | 25.74 | 0.50 2.46 3.64 5.09 7.26 9.47 14.24
0.82 | 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81
0.62 | 3.82 5.32 7.32 | 10.06 | 14.77 | 32.15 2.64 3.88 5.32
0.39 | 10.34 | 14.83 | 34.26 | 0.90 2.69 4.18 5.34 7.59 10.66
0.96 | 36.66 | 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01
0.19 | 2.75 4.26 5.41 7.63 | 17.12 | 46.12 1.26 2.83 4.33
0.66 | 11.25 | 17.14 | 79.05 | 1.35 2.87 5.62 7.87 11.64 17.36
0.40 | 3.02 4.34 5.71 7.93 | 11.79 | 18.10 1.46 4.40 5.85
0.26 | 11.98 | 19.13 | 1.76 3.25 4.50 6.25 8.37 12.02 2.02
0.31 | 4.51 6.54 8.53 | 12.03 | 20.28 2.02 3.36 6.76 12.07
0.73 | 2.07 3.36 6.93 8.65 | 12.63 | 22.69 5.49

The maximum likelihood method is applied to estimate the

parameters of the three models Lindley (L), Kumaraswamy Lindley (KL),

and exponentiated Kumaraswamy Lindley (EKL) distributions. The

resulting estimates with the negative of the likelihood function (- /).

Table 2. The ML estimated and Log-likelhood for data set

Model ML estimates -0
L 6 = 0.196 419.529
6 = 0.503
KL 4 =0.978 414.229
b = 0.280
6 =0.120
G = 4.479
EKL ) 411.015
b=1.768

=0.121

>
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The variance covariance matrix [ (e‘:;)_1 of the MLEs under the EKL

distribution for the data set is computed as

1.0928 0.0307 —-0.0329 —-0.0002

0.0307 0.5087 —0.0093 - 0.0163
- 0.0329 - 0.0093 0.0009 0.0002
- 0.0002 —-0.0163 0.0002 0.0004

Thus var(&)=1.0928, var(b) = 0.5087, var(¢) = 0.0009, and var(8)=0.0004.
Therefore, 95% confidence intervals for a, b, ¢, and 0 are [2.4300, 6.5280],
[0.3701, 3.1659], [0.0818, 0.1602], and [0.0808, 0.1592], respectively.

The LR test statistic to test the hypotheses Hy:a=0b=c=1
versus Hy =a#1vb#1lvecz1l is o=17.028 > 7.815 = 13 5, SO
we reject the null hypothesis.

The values of the parameters’ estimates are used to plot the pdf and the
cdf for the three distributions L, KL, and EKL in Figure 4 and Figure 5.
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Figure 4. Estimated densities of the models for data set.
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Figure 5. Estimated cumulative densities of the models for data set.
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Table 3. Criteria comparison

Model -2¢ AIC AICC BIC

Lindley 839.04 841.06 841.091 843.892

Kum-Lindley 828.458 834.458 834.651 843.014

ExpKum-Lindley 822.03 830.03 830.355 841.438

In order to compare the three distributions, we consider criteria like
—2¢, AIC (Akaike information criterion), AICC (corrected Akaike

information criteria), and BIC (Bayesian information criterion), for the
data set. As shown in Table 3 the better distribution corresponds to
smaller —2¢, AIC, AICC, and BIC values, where

2k(k +1)

AIC = 2K -2¢; AICC = AIC + ;
n—-k-1

BIC = k" log(n) — 2¢.

Here k 1s the number of parameters in the statistical model, n the
sample size and ¢ is the maximized value of log-likelihood function
under the considered model. Table 2 shows the MLEs under the three
distribution, Table 3 shows the values of -2¢, AIC, AICC, and BIC,

values. Table 3 indicates that the EKL distribution leads to a better fit
than the Lindley and KL distribution.

6.2. Simulation study

We conducted Monte Carlo simulation studies to assess on the finite
sample behavior of the MLEs of a, b, ¢, and 0. All results were obtained
from 1000 Monte Carlo replications simulations. The EKL random
number generation was performed using the inversion method. In each

replication, a random sample of size n is drawn from the EKL(a, b, c, 0)

distribution and the maximum likelihood estimates of the parameters
were obtained. The mean, bias and mean squared error (MSE) for each
parameter was computed under different sample sizes n = 25, 50, 75, 100,
and 200.
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Table 4. Mean estimates, biases and mean square errors of the MLEs of
a=02,0=2c¢c=2,06=1

n Parameter Mean Bias MSE
25 a 0.1774 —0.0226 0.0050
b 2.6447 0.6447 1.0902
c 4.5051 2.5051 7.4921
0 0.9342 —0.0658 0.0257
50 a 0.1566 —0.0434 0.0033
b 1.5234 —0.4766 0.2317
c 2.5142 0.5142 0.6204
0 1.2577 0.2577 0.0684
75 a 0.1394 —0.0606 0.0039
a 1.5260 —0.4740 0.2278
c 3.1250 1.1250 1.3893
0 1.4350 0.4350 0.1930
100 a 0.1941 ~0.0059 0.0001
b 1.1362 ~0.8639 0.7476
c 1.5537 —0.4463 0.2288
0 2.2233 1.2233 1.5049
200 a 0.1630 —0.0370 0.0022
b 1.9876 —0.0124 0.0125
c 3.1817 1.1817 1.7684

0 1.2877 0.2877 0.0868
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Table 5. Mean estimates, biases and mean square errors of the MLEs of
a=3,b=5c¢=2,0=0.5

n Parameter Mean Bias MSE
25 a 2.5531 —0.4469 0.3169
b 5.6413 0.6413 0.6218
c 4.2663 2.2663 5.4789
0 0.4968 —0.0032 0.0015
50 a 3.6644 0.6644 0.4419
b 4.8606 —0.1394 0.0203
c 3.7244 1.7244 2.9783
0 0.6071 0.1071 0.0115
75 a 3.7179 0.7179 0.5429
b 5.2223 0.2223 0.0515
c 3.8310 1.8310 3.4088
6 0.5958 0.0958 0.0092
100 a 4.9931 1.9931 7.2825
b 2.6961 —2.3039 5.3230
c 3.4341 1.4341 3.5870
0 0.8422 0.3422 0.1208
200 a 2.7023 —0.2977 2.7909
b 6.8421 1.8421 10.2354
¢ 3.9669 1.9669 7.8353
0 0.4542 —0.0458 0.4563

7. Conclusion

We proposed a new distribution, named the EKL distribution which
extends the KL distribution in the analysis of data with real support. An
obvious reason for generalizing a standard distribution is because the
generalized form provides larger flexibility in modelling real data. We
have derived various properties of the new distribution, including the
moment, moment generating function, and quantile function. Rényi and

Shannon entropies have been obtained. The estimation of the model
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parameters is approached by maximum likelihood and the observed

information matrix is derived. Finally, an application to real data set

shows that the fit of the new model is superior to the fits of its main sub-

models. We hope that the proposed model may attract wider applications

in statistics.
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