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Abstract 

In this paper, a new class of generalized distributions called the Exponentiated 
Kumaraswamy Lindley (EKL) distribution is introduced. The new distribution 
is a quite flexible model in analyzing positive data. We provide a comprehensive 
mathematical treatment of the statistical properties of this distribution. Some 
structural properties of the proposed new distribution are discussed including 
probability density function and explicit forms for its survival function, hazard 
function, and quantile function. The method of maximum likelihood is used to 
estimate the model parameters and the observed and expected information 
matrices are derived. A real data set is used to compare the new model with 
widely known distributions. A simulation study is conducted and the mean, bias 
and mean squared error of estimates are presented for different sample sizes. 
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1. Introduction 

In many fields of applied sciences such as medicine, engineering, and 
finance amongst others, modelling and analyzing lifetime data are 
crucial. Several lifetime distributions have been used to model such kinds 
of data for instance the exponential, Weibull, gamma, Rayleigh 
distributions and their generalizations (see, e.g., Gupta and Kundu [1, 
2]). Each distribution has its own characteristics due specifically to the 
shape of the failure rate function which may be only monotonically 
decreasing or increasing or constant in its behaviour, as well as non-
monotone, being bathtub shaped or even unimodal. Lindley distribution 
is important for studying stress-strength reliability modelling. Ghitany et 
al. [3] discussed various properties of this distribution and showed that 
the Lindley distribution provides a better model than the exponential 
distribution in many ways. Sankaran [4] introduced the discrete Poisson-
Lindley distribution by combining the Poisson and Lindley distributions. 
Mazucheli and Achcar [5] discussed the applications of Lindley 
distribution to competing risks lifetime data. Ghitany and Al-Mutairi [6], 
and Ghitany et al. [7] obtained size-biased and zero-truncated version of 
Poisson-Lindley distribution and discussed their various properties and 
applications. Bakouch et al. [8] obtained an extended Lindley distribution 
and discussed its various properties and applications. Ghitany et al. [9] 
developed a two-parameter weighted Lindley distribution and discussed 
its applications to survival data. Ghitany and Al-Mutairi [10] discussed 
various estimation methods for the discrete Poisson-Lindley distribution. 
Rama and Mishra [11] studied quasi Lindley distribution. Ghitany et al. 
[12] studied power Lindley distribution and associated inference. 
Zakerzadah and Dolati [13] and Elbatal et al. [14] have obtained the 
generalized Lindley distribution and the Kumaraswamy quasi Lindley 
distribution, respectively, and discussed various properties and 
applications. Cakmakyapan and Kadilar [15] have obtained the 
Kumaraswamy Lindley distribution. 
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The Kumaraswamy distribution as defined by Kumaraswamy (1980) 
in [16] is identified as an alternative to beta distribution because they 
both have the same basic shape properties (unimodal, uniantimodal, 
increasing, decreasing, monotone or constant). The probability density 
function (pdf) of the Kumaraswamy distribution is given as follows: 

( ) ( ) .10;1 11 <<−= −− xxabxxf baa   (1) 

The corresponding cumulative density function (cdf) is given as 

( ) ( ) ,10;11 <<−−= xxxF ba   (2) 

where 0, >ba  are shape parameters. 

The pdf given in Equation (1) does not involve any incomplete beta 
function ratio and it is regarded as being tractable because of its mild 
algebraic properties. Jones [17] explored the background of this 
distribution and discussed the advantages and disadvantages of this 
distribution compared with the beta distribution. Cordeiro and Castro 
[18] have proposed a generalization of the probability distribution, by 
using (1) and (2). The density and distribution function of generalized 
class given by Cordeiro and Castro have following forms: 

( ) ( ) ( ) ( ( ) ) ,1 11 −− −= baa xGxGxabgxf   (3) 

and 

( ) ( ( ) ) ,11 baxGxF −−=   (4) 

where ( ) ( )
dx

xdGxg =  and parameters 0, >ba  are shape parameters. 

Cordeiro et al. [19] introduced the Kumaraswamy Weibull distribution. 
Also, Bourguignon et al. [20] introduced the Kumaraswamy Pareto 
distribution. Later, Paranaiba et al. [21] and Gomes et al. [22] introduced 
the Kumaraswamy generalized Burr and Rayleigh distributions, followed 
by the paper of de Pascoa et al. [23] where they introduced the 
Kumaraswamy generalized gamma distribution. 
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In this article, we present a new generalization of Lindley 
distribution called the exponentiated Kumaraswamy Lindley (EKL) 
distribution. The study examines various properties of the new model. 
The rest of the paper is organized as follows: In Section 2, we define the 
generalization of the EKL distribution. The probability density function 
and cumulative distribution are given. Quantile function, moments, and 
moment generating function are discussed in Section 3. Renyi and 
Shannon entropies are calculated in Section 4. In Section 5, we discuss 
maximum likelihood estimation and determine the elements of the 
observed information matrix and expected Fisher information matrix. 
Section 6 provides an application to a real data set and a simulation 
study is presented. Section 7 ends the paper with some conclusions. 

2. Exponentiated Kumaraswamy Lindley  
(EKL) Distribution 

In this section, we introduce the exponentiated Kumaraswamy 
Lindley (EKL) distribution. The cumulative distribution function (cdf) of 
the Lindley distribution, as introduced by Lindley [24], is given by 

( ) [ ] .0,0,111 >θ>
+θ
θ+−= θ− xxexG x  (5) 

Using (5) in (4), we obtain the cdf of the Kumaraswamy Lindley (KL) 
distribution. The study of exponentiated distributions is useful in 
statistics, as indicated by Mudholkar and Srivastava [25] for a very 
important reason: It provides methods of extending distributions for 
added flexibility in fitting data. For a baseline cdf ( ),xG  the 

exponentiated distribution ( ) ( ) ,δ= xGxF  where the exponentiation 

parameter 0>δ  gives the flexibility to accommodate both monotone and 
non-monotone hazard rate functions. Nassar and Eissa [26, 27] and many 
authors studied the various properties of the exponentiated distributions. 
In this paper, we consider the EKL with probability density function (pdf) 
given by 
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Using the generalized binomial theorem, if n=β  is a natural number, 

the series is given by 
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If β  is neither a natural number nor zero, the series converges absolutely 

for 1<z  and diverges for ,1>z  (see Gradshteyn and Ryzhik [28]). In 

this case, the series is written using the following infinite sum: 
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The EKL pdf can be rewritten, for cba ,,  non-integers, as follows: 
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Since 
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This EKL pdf can be written in the form 

( ) ( ) ( ) ,1 1 mxl
lmjEKL xexwxf +θ−+= k   (8) 

where 
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Also, the cumulative distribution function (cdf) of the EKL is given by 

( ) .0,0,0,0,11111 >θ>>>



































+θ
θ+−−−= θ− cbaxexF

cba
x

EKL  

(10) 

 

 



A NEW GENERALIZATION OF KUMARASWAMY … 75

 

 

 



M. MAHMOUD et al. 76

 

 



A NEW GENERALIZATION OF KUMARASWAMY … 77

 

Figure 1. Plots of the pdf of the EKL for selected values of the 
parameters. 

Figures 1 and 2 are the plots of the pdf and cdf of the EKL for 
different values of the parameters. It is obvious from the displayed plots 
in Figure 1 that pdf of the EKL distribution is unimodal for all values of 
the parameters, skewed to the right, and for 1<θ  the graph expands 
while for 1>θ  the graph diminishes. Also, for increasing values of b, the 
graph has a higher mode peak. 
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Figure 2. Plots of the cdf of EKL for selected values of the parameters. 

 



M. MAHMOUD et al. 80

The survival (reliability) function of the EKL, is defined as 

( ) ( ) .1111111
cba

x
EKLEKL

xexFxS



































+θ
θ+−−−−=−= θ−  (11) 

Now, the hazard rate function of the EKL is given by 

  ( ) ( )
( )xF

xfxhEKL −
= 1  

( ) ( ) ( ).1 11 xSxexw EKL
mxl

lmj
−+θ− ×+= k  (12) 

In Figure 3, the shape of the hazard rate function can be observed 
from the following various plots of the hazard rate function for different 
values of the parameters. 
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Figure 3. Plots of the hazard rate of EKL for selected values of the 
parameters. 
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Note that the EKL distribution has several well-known models as 
special cases, which make it of distinguishable scientific importance from 
other distributions. 

● If ,1=== cba  then Equation (6) reduces to the Lindley 

distribution. 

● If ,1=== cba  then Equation (10) reduces to the gamma 

distribution with parameters ( ).,2 θ  

● If ,1=c  we get the Kumaraswamy Lindley distribution. 

The graphs of the hazard function for several combinations of the 
parameters represent various shapes including monotonically increasing, 
monotonically decreasing, bathtub and up-side down bathtub shapes. 
This attractive flexibility makes EKL hazard rate function useful and 
suitable for nonmonotone empirical hazard behaviours, which are more 
likely to be encountered or observed in real life situations. 

3. Basic Properties of the Distribution 

In this section, we study some basic properties of EKL distribution, 
specifically the quantile function, moments, and moment generating 
function. 

3.1. Quantile function 

Theorem 1. The quantile function of EKL distribution is at the 
following approximate point: 

( )( ) .111 /1/1/1
2

abcuX 





 −−

θ

+θ≈  (13) 

Proof. If ( )xF  is continuous and strictly increasing, then the quantile 

function ( ) ( ) ( )1,0,1 ∈= − uuFxQ  can be straightforward computed by 

inverting (10) to obtain 
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Using the Taylor series expansion given by ( ) ,!0 j
txe

j

j
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=  an 

approximate quantile function of the EKL distribution is given by (13). 

In particular, the median of the EKL distribution is given by 

( ) ( )( ) .21111 /1/1/1
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 −−

θ

+θ≈  (15) 

The random sample can also be easily generated from (14) by taking U as 
a uniform random variable in ( ).1,0  

3.2. Moments 

Many of the interesting characteristics and features of a distribution 
can be studied through its moments (e.g., tendency, dispersion, skewness, 
and kurtosis). Moments are necessary and important in any statistical 
analysis, especially in applications. The following theorem gives the 
moments of the EKL distribution. 

Theorem 2. If X~EKL, then the r-th non-central moment of the EKL 
distribution is given by the following: 
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where lmjw k  is given by Equation (9). 

Proof. Using the pdf given in Equation (8), 
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Therefore, 
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Hence, we obtain the result given by Equation (16). 

3.3. Moment generating function 

In this subsection, we derive the moment generating function of EKL 
distribution. 

Theorem 3. If X ~ EKL, the moment generating function of X is then 
given as 
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where lmjkw  is given by Equation (9). 

Proof. We start with the well-known definition of the moment 
generating function and using the pdf form in Equation (8) 
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which completes the proof. 
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4. Entropy 

An entropy of a random variable X is a measure of variation of the 
uncertainty. A popular entropy measure is Rényi entropy [29]. If X has 
the pdf ( ),.f  then Rényi entropy is defined by 

( ) ( ) ,log1
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Now, Shannon entropy [30] defined by ( )[ ]xfE log−  is the particular case 

of Equation (18) as .1↑γ  From Equation (6) and (19), 
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where lmjkw  is given by Equation (9). 

5. Estimation of the Parameters 

Here, we consider estimating the parameters of the EKL distribution 
by the method of maximum likelihood and provide expressions for the 
associated expected information matrix. Suppose nXXX ,,, 21 …  is a 

random sample from EKL ( ),ξ  where ( ).,,, θ=ξ cba  The log likelihood 

function of the parameters is given by 
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By equating each of the four equations to zero, the maximum 
likelihood estimates (MLEs) of the parameters are the solution of this 
system of nonlinear equations, which are solved iteratively. The observed 
information matrix given by 
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Applying the usual large sample approximation, the ML estimates 

( )θ=ξ ˆ,ˆ,ˆ,ˆˆ cba  can be treated as being approximately ( ( )),, 1
4 ξξ −

nIN  
where ( ) ( )[ ]ξ=ξ nn JEI  under conditions that are fulfilled for parameters 
in the interior of the parameter space but not on the boundary. The 

asymptotic distribution ( ) ( ( )).,0ˆ 1
4 ξ→ξ−ξ −

nINn  

Approximate two sided ( )α−1 % confidence intervals for ,,, cba  and ,θ  
respectively, given by 
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where αz  is the upper th-100 α  percentile of the standard normal 
distribution. 

The elements of the expected Fisher information matrix are 
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6. Numerical Application 

In this section, we illustrate the usefulness of the EKL distribution. 

6.1. Numerical example 

A real data set is used to show that the EKL distribution can be a 
better model than the Lindley distribution. 

The data set given in Table 1 represents an uncensored data set 
corresponding to remission times (in months) of a random sample of 128 
bladder cancer patients reported in Lee and Wang [31]. 
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Table 1. The remission times (in months) of bladder cancer patients 

0.08 2.09 3.48 4.87 6.94 8.66 13.11 23.63 0.20 2.23 

0.52 4.98 6.97 9.02 13.29 0.40 2.26 3.57 5.06 7.09 

0.22 13.80 25.74 0.50 2.46 3.64 5.09 7.26 9.47 14.24 

0.82 0.51 2.54 3.70 5.17 7.28 9.74 14.76 26.31 0.81 

0.62 3.82 5.32 7.32 10.06 14.77 32.15 2.64 3.88 5.32 

0.39 10.34 14.83 34.26 0.90 2.69 4.18 5.34 7.59 10.66 

0.96 36.66 1.05 2.69 4.23 5.41 7.62 10.75 16.62 43.01 

0.19 2.75 4.26 5.41 7.63 17.12 46.12 1.26 2.83 4.33 

0.66 11.25 17.14 79.05 1.35 2.87 5.62 7.87 11.64 17.36 

0.40 3.02 4.34 5.71 7.93 11.79 18.10 1.46 4.40 5.85 

0.26 11.98 19.13 1.76 3.25 4.50 6.25 8.37 12.02 2.02 

0.31 4.51 6.54 8.53 12.03 20.28 2.02 3.36 6.76 12.07 

0.73 2.07 3.36 6.93 8.65 12.63 22.69 5.49   

The maximum likelihood method is applied to estimate the 
parameters of the three models Lindley (L), Kumaraswamy Lindley (KL), 
and exponentiated Kumaraswamy Lindley (EKL) distributions. The 
resulting estimates with the negative of the likelihood function ( ).A−  

Table 2. The ML estimated and Log-likelhood for data set 

Model ML estimates A−  

L 196.0ˆ =θ  419.529 

503.0ˆ =θ  

978.0ˆ =a  KL 

280.0ˆ =b  

414.229 

120.0ˆ =θ  

479.4ˆ =a  

768.1ˆ =b  
EKL 

121.0ˆ =c  

411.015 
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The variance covariance matrix ( ) 1ˆ −ξI  of the MLEs under the EKL 

distribution for the data set is computed as 

.

0004.00002.00163.00002.0

0002.00009.00093.00329.0

0163.00093.05087.00307.0

0002.00329.00307.00928.1

























−−

−−

−−

−−

 

Thus ( ) ( ) ( ) ,0009.0ˆvar,5087.0ˆvar,0928.1ˆvar === cba  and ( ) .0004.0ˆvar =θ  

Therefore, 95% confidence intervals for ,,, cba  and θ  are [2.4300, 6.5280], 

[0.3701, 3.1659], [0.0818, 0.1602], and [0.0808, 0.1592], respectively. 

The LR test statistic to test the hypotheses 1:H0 === cba  

versus 111H1 ≠∨≠∨≠= cba  is ,815.7028.17 2
05.0,3χ=>=ω  so 

we reject the null hypothesis. 

The values of the parameters’ estimates are used to plot the pdf and the 
cdf for the three distributions L, KL, and EKL in Figure 4 and Figure 5. 
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Figure 4. Estimated densities of the models for data set. 

 

Figure 5. Estimated cumulative densities of the models for data set. 
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Table 3. Criteria comparison 

Model A2−  AIC AICC BIC 

Lindley 839.04 841.06 841.091 843.892 

Kum-Lindley 828.458 834.458 834.651 843.014 

ExpKum-Lindley 822.03 830.03 830.355 841.438 

In order to compare the three distributions, we consider criteria like 
,2A−  AIC (Akaike information criterion), AICC (corrected Akaike 

information criteria), and BIC (Bayesian information criterion), for the 
data set. As shown in Table 3 the better distribution corresponds to 
smaller AICC,,AIC,2A−  and BIC values, where 

( ) ;1
12;22
−−
++=−=
k
kk

nAICAICCKAIC A  

( ) .2log A−= ∗ nBIC k  

Here k  is the number of parameters in the statistical model, n the 
sample size and A  is the maximized value of log-likelihood function 
under the considered model. Table 2 shows the MLEs under the three 
distribution, Table 3 shows the values of ,AICC,AIC,2A−  and BIC, 

values. Table 3 indicates that the EKL distribution leads to a better fit 
than the Lindley and KL distribution. 

6.2. Simulation study 

We conducted Monte Carlo simulation studies to assess on the finite 
sample behavior of the MLEs of a, b, c, and .θ  All results were obtained 
from 1000 Monte Carlo replications simulations. The EKL random 
number generation was performed using the inversion method. In each 
replication, a random sample of size n is drawn from the EKL ( )θ,,, cba  

distribution and the maximum likelihood estimates of the parameters 
were obtained. The mean, bias and mean squared error (MSE) for each 
parameter was computed under different sample sizes n = 25, 50, 75, 100, 
and 200. 
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Table 4. Mean estimates, biases and mean square errors of the MLEs of 
1,2,2,2.0 =θ=== cba  

n Parameter Mean Bias MSE 

25 a 0.1774 – 0.0226 0.0050 

 b 2.6447   0.6447 1.0902 

 c 4.5051   2.5051 7.4921 

 θ  0.9342 – 0.0658 0.0257 

50 a 0.1566 – 0.0434 0.0033 

 b 1.5234 – 0.4766 0.2317 

 c 2.5142   0.5142 0.6204 

 θ  1.2577   0.2577 0.0684 

75 a 0.1394 – 0.0606 0.0039 

 a 1.5260 – 0.4740 0.2278 

 c 3.1250   1.1250 1.3893 

 θ  1.4350   0.4350 0.1930 

100 a 0.1941 – 0.0059 0.0001 

 b 1.1362 – 0.8639 0.7476 

 c 1.5537 – 0.4463 0.2288 

 θ  2.2233   1.2233 1.5049 

200 a 0.1630 – 0.0370 0.0022 

 b 1.9876 – 0.0124 0.0125 

 c 3.1817   1.1817 1.7684 

 θ  1.2877   0.2877 0.0868 
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Table 5. Mean estimates, biases and mean square errors of the MLEs of 
5.0,2,5,3 =θ=== cba  

n Parameter Mean Bias MSE 

25 a 2.5531 – 0.4469 0.3169 

 b 5.6413    0.6413 0.6218 

 c 4.2663    2.2663 5.4789 

 θ  0.4968 – 0.0032 0.0015 

50 a 3.6644    0.6644 0.4419 

 b 4.8606 – 0.1394 0.0203 

 c 3.7244    1.7244 2.9783 

 θ  0.6071    0.1071 0.0115 

75 a 3.7179    0.7179 0.5429 

 b 5.2223    0.2223 0.0515 

 c 3.8310    1.8310 3.4088 

 θ  0.5958    0.0958 0.0092 

100 a 4.9931    1.9931 7.2825 

 b 2.6961 – 2.3039 5.3230 

 c 3.4341    1.4341 3.5870 

 θ  0.8422    0.3422 0.1208 

200 a 2.7023 – 0.2977 2.7909 

 b 6.8421    1.8421 10.2354 

 c 3.9669    1.9669 7.8353 

 θ  0.4542 – 0.0458 0.4563 

7. Conclusion 

We proposed a new distribution, named the EKL distribution which 
extends the KL distribution in the analysis of data with real support. An 
obvious reason for generalizing a standard distribution is because the 
generalized form provides larger flexibility in modelling real data. We 
have derived various properties of the new distribution, including the 
moment, moment generating function, and quantile function. Rényi and 
Shannon entropies have been obtained. The estimation of the model 
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parameters is approached by maximum likelihood and the observed 
information matrix is derived. Finally, an application to real data set 
shows that the fit of the new model is superior to the fits of its main sub- 
models. We hope that the proposed model may attract wider applications 
in statistics. 
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