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Abstract 

For a commutative and unitary ring R, we characterize the classes of a classical 
equivalence relation defined on extensions of an [ ] module,-XR  which is            

R-projective by another [ ] module.-XR  The modules that are extensions of an 

[ ] ,module- 2MXR  which is R-projective by an [ ] 1module- MXR  have a fairly 

simple form which we denote by ,21 MM f×  where f is an R-homomorphism 

from 2M  to .1M  For 21,, MMR  and f as in the foregoing, but 2M  is not 

necessarily R-projective, we search to classify the [ ] .modules- 21 MMXR f×  
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1. Introduction 

All rings considered in this paper are supposed to be with unit. Let R 
be a commutative ring. Let N and L be two R-modules. We recall (see     
[1, 7, 9]) that an extension of L by N is a triple ( ),,, vMu  where M is an   

R-module and u, v are R-module homomorphisms such that the sequence  

OLMNO vu →→→→  

is exact. Two extensions ( )vMu ,,  and ( )vMu ′′′ ,,  of L by N are 

equivalent if there exists an isomorphism of R-modules MM ′→ϕ :  

such that the following diagram is commutative: 

 

For this equivalence relation, the class of an extension ( )vMu ,,  of L by 

N is denoted by ( ).,, vMu  

On the group rings, one of the technics used to study the module 
extensions consists to show that a module, which is extension of a module 
L by another module N - under some conditions - can be written in a 
simple form that is denoted by ,LN α×  where α  is a cocycle or a 

derivation (see, for example, [2], [3], [8]). For the polynomial rings, this 
form is much simpler, indeed instead of cocycles or derivations we can 
take homomorphisms of R-modules. 

The polynomial ring with coefficients in R will be denoted by [ ].XR  

In this paper, we study the extensions of [ ] modules.-XR  We search 

essentially to characterize these extensions. In Section 2, we characterize 
the classes of this equivalence relation defined on extensions of an 
[ ] ,modules- 2MXR  which is R-projective by an [ ] .module- 1MXR  As we 
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already said, the modules that are extensions of an [ ] ,module- 2MXR  

which is R-projective by an [ ] 1modules- MXR  have a fairly simple form 

which we denote by ,21 MM f×  where f is an R-homomorphism from 

2M  to .1M  In Section 3, for 21, MM  and f as in the foregoing, but 2M  

is not necessarily R-projective, we search to classify the [ ] modules-XR  

.21 MM f×  In the same time, we give some properties of these modules. 

2. Extension Equivalence of Modules  
Over Polynomial Rings 

Let R be a commutative ring. Let 1M  and 2M  be two [ ] modules.-XR  

Let ( ),, 12 MMHomf R∈  where ( )12, MMHomR  is the set of all          

R-module morphisms from the R-module 2M  to the R-module .1M  Then, 

we can define a structure of [ ] module-XR  on 21 MM ×  by ( ) ∈∀ 21, mm  

( ) ( ( ) )..,.,., 2212121 mXmfmXmmXMM +=×  The module 21 MM ×  

equipped with this structure of [ ] module-XR  will be denoted by 

.21 MM f×  In this case, the following sequence 211
1 MMMO f
i

×→→  

,2
2 OM

p
→→  is an exact sequence of [ ] modules,-XR  where 1i  is the first 

injection and 2p  is the second projection. 

Theorem 2.1. Let OMMMO vu →→→→ 21  be an exact sequence of 

[ ] .- odulesmXR  If 2M  is R-projective, then there exists ( )12, MMHomf R∈  

such that ( ) ( ).,,,, 2211 pMMivMu f×=  

Proof. OMMMO vu →→→→ 21  is exact and 2M  is projective as 

R-module. Then, there exist ( )MMHomv R ,2∈′  and ( )1, MMHomu R∈′  

such that 1Midouu =′  and .2Midvvo =′  It is well-known that 

21: MMM ⊕→θ  defined by ( ) ( )( )mvmum ,′  is an isomorphism of 
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R-modules, and MMM →⊕θ− 21
1 :  is defined by ( ) ( ),, 21 xummm +  

where m is such that ( ) 2mmv =  and 1Mx ∈  is such that ( ).1 mumx ′−=  

We define a structure of [ ] module-XR  on 21 MM ⊕  by 

( ) ( ) ( ( )( )).,.,.,, 21
1

212121 mmXmmXMMmm −θθ=⊕∈∀  

Then, 

( ) ( ( )( ))21
1

21 ,.,. mmXmmX −θθ=  

( ( )( ))xumX +θ= .  

( )( )xuXmX .. +θ=  

( ( )( ) ( )( ))xuXmXvxuXmXu ..,.. ++′=  

( )( )2.,.. mXxXmXu +′=  

( ( ) ( ) )..,... 21 mXmuXmXumX ′−′+=  

We have ( ) ,2mmv =  so there exists ( )vm ker∈′  such that ( ) =′ 2mv  
.mm ′+  As ( ) ( ),Imker uv =  then there exists 12 Mm ∈′  such that 

( ) ( ).22 mummv ′+=′  So, 

( ) ( ) ( ( ( ) ( ))) ( ( ) ( ))2222 .... mumvuXmumvXumuXmXu ′−′′−′−′′=′−′  

( )( ) ( )( ) ( ( )) ( )( )2222 .... mouuXmvouXmuXumvXu ′′+′′−′′−′′=  

( )( ) ( )( )... 22 mvouXmvXu ′′−′′=  

Therefore, 

( ) ( ( )( ) ( )( ) )222121 .,...,. mXmvouXmvXumXmmX ′′−′′+=  

( )( ),.,. 221 mXmfmX +=  

where ( )12, MMHomf R∈  is defined by 

( ) ( )( ) ( )( )..., 22222 mvouXmvXumfMm ′′−′′=∈∀  

21: MMM f×→θ  is an isomorphism of [ ] modules-XR  and we have 

1iou =θ  and .2 vop =θ   
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Theorem 2.2. Let ( ),,, 12 MMHomgf R∈  where 1M  and 2M  are 
two [ ] .- odulesmXR  Then, the following conditions are equivalent: 

(1) ( ) ( ).,,,, 22112211 pMMipMMi gf ×=×  

(2) There exists ( )12, MMHomh R∈  such that, for all ,22 Mm ∈  

( ) ( ) ( ) ( )... 2222 mgmhXmXhmf +=+  

Proof. (1) ⇒  (2): If ( ) ( ),,,,, 22112211 pMMipMMi gf ×=×  then 

there exists a homomorphism of [ ] modules-XR  2121: MMMM gf ×→×ϕ  

such that 11 ioi =ϕ  and .22 pop =ϕ  Let ( ) ., 2121 MMmm ×∈  We have 

( )( ) ( )111 0, moim ϕ=ϕ  

( )11 mi=  

( ).0,1m=  

We put ( )( ) ( ).,,0 212 mmm ′′=ϕ  As ,22 pop =ϕ  then .22 mm =′  We 
define an application 12: MMh →  by ( ) .12 mmh ′=  Then, we have 
( )( ) ( )( ).,, 22121 mmhmmm +=ϕ  We first show that h is a homomorphism 

of R-modules. Let 222, Mmm ∈′  and let (( ))22,0. mmRr ′+ϕ∈  
( )( )., 2222 mmmmh ′+′+=  But, 

( )( ) ( )( ) ( )( )2222 ,0,0,0 mmmm ′ϕ+ϕ=′+ϕ  

( )( ) ( )( )2222 ,, mmhmmh ′′+=  

( ) ( )( )., 2222 mmmhmh ′+′+=  

So, ( ) ( ) ( ).2222 mhmhmmh ′+=′+  We have also ( )( ) ( ( ) )..,..,0 222 mrmrhmr =ϕ  
But, 

( )( ) ( )( )22 ,0.,0 mrmr ϕ=ϕ  

( )( )2,0 mrϕ=  

( )( )22 , mmhr=  

( )( )..,. 22 mrmhr=  
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So, ( ) ( )... 22 mhrmrh =  Therefore, ( )., 12 MMHomh R∈  Let .22 Mm ∈  

( )( ) ( )( ).,0.,0. 22 mXmX ϕ=ϕ  But, 

( )( ) ( )( ))222 .,,0. mXmfmX ϕ=ϕ  

( ( ) ( ) ),.,. 222 mXmXhmf +=  

and 

( )( ) ( )( )222 ,.,0. mmhXmX =ϕ  

( ( ) ( ) )..,.. 222 mXmgmhX=  

Therefore, ( ) ( ) ( ) ( )..., 222222 mgmhXmXhmfMm +=+∈∀  

(2) ⇒  (1): Assume that there exists ( )12, MMHomh R∈  such that, 

( ) ( ) ( ) ( )..., 222222 mgmhXmXhmfMm +=+∈∀  We define an application 

2121: MMMM gf ×→×ϕ  by ( ) ( )( ) =ϕ×∈∀ 212121 ,,, mmMMmm f  

( )( )., 221 mmhm +  We easily see that ϕ  is a homomorphism of R-modules. 

Let ( ) ., 2121 MMmm f×∈  

( )( ) ( )( )( )22121 .,.,. mXmfmXmmX +ϕ=ϕ  

( ) ( )( )2221 .,.. mXmXhmfmX ++=  

( ) ( )( )2221 .,.. mXmgmhXmX ++=  

( ( )( ) ( ) )2221 .,. mXmgmhmX ++=  

( )( )221 ,. mmhmX +=  

( )( ).,. 21 mmX ϕ=  

Therefore, ϕ  is a homomorphism of [ ] modules,-XR  and it is easy to see 

that 11 ioi =ϕ  and .22 pop =ϕ    
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Remark 2.3. If we assume that the conditions of Theorem 2.2 are 
satisfied, then we have seen in the proof of this theorem, that the 
homomorphism ϕ  such that the following diagram of [ ] modules-XR  is 

commutative: 

 

is defined by ( ) ( )( ) ( )( ).,,,, 221212121 mmhmmmMMmm f +=ϕ×∈∀  

(Here, we kept the notation of Theorem 2.2.) ϕ  is necessarily an isomorphism 

of [ ] modules-XR  and 1−ϕ  is defined by ( ) ,, 2121 MMmm g×∈∀  

( )( ) ( )( ).,, 22121
1 mmhmmm −=ϕ−  

Let 1M  and 2M  be two [ ] modules-XR  that are R-free of finite rank. 

Let 1B  and 2B  be two bases of 1M  and ,2M  respectively. Let  

( )fMatCf 12, BB=  and ( )gMatCg 12, BB=  be the matrices of f and g, 

respectively, with respect to the bases 2B  and ,1B  and let A 

(respectively, B) be the matrix representing the action of X on 1M  with 

respect to the base 1B  (respectively, 2M  with respect to the base 2B ). 

Corollary 2.4. The following conditions are equivalent: 

(1) ( ) ( ).,,,, 22112211 pMMipMMi gf ×=×  

(2) There exists ( )RMH nn 21,∈  such that, .gf CCHBAH −=−  

Proof. Just take ( ).12, hMatH BB=    

In the rest of this section, we give some interesting results on the 
[ ] ,modules- 21 MMXR f×  where we use the following notations: 

( ) ( ){ }0Ker 1 =∈= xfMxf  and ( ) ( ){ }.Im 1Mxxff ∈=  
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Proposition 2.5. The following assertions are true: 

(1) Each direct summand of 2M  included in ( )fKer  is a direct 

summand of .21 MM f×  

(2) If 1N  is a direct summand of 1M  and ( ) ,Im 1Nf ⊆  then 

21 MN f×  is a direct summand of .21 MM f×  

Proof. (1) If ,222 MMM ′′⊕′=  where 2M ′  and 2M ′′  are two         

[ ] submodules-XR  of 2M  such that ( ),Ker2 fM ⊂′  then ff MMM ×=× 121  

{ } .0 22 MM f ′×⊕′′  

(2) If 1N  is an [ ] submodule-XR  of 1M  such that ( ) ,Im 1Nf ⊆  and 

there exists an [ ] submodule-XR  of 1M  such that ,111 NNM ′⊕=  then 

121 NMM f ′=×  { } .0 21 MN ff ×⊕×    

Corollary 2.6. (1) If f is zero, then 21 MM f×  is a decomposable 

[ ] .- odulemXR  

(2) If ( )fIm  is a direct summand of ,1M  then ( ) 2Im Mf f×  is a direct 

summand of .21 MM f×  

Proof. Obvious.   

3. Isomorphism Classes 

Let R be a commutative ring. Let ( ) ( ),,, RMRM nmn  and ( )RGln  

denote, respectively, the set of the mn ×  matrices, the set of the nn ×  
matrices, and the set of the nn ×  invertible matrices, with entries in R, 
where m and n are two nonzero natural numbers. 

Let 1M  and 2M  be two [ ] modules-XR  that are R-free of respective 

finite rank n and m. We assume that nRM =1  and mRM =2  (as         

R-modules). Let 1B  and 2B  be the respective canonical bases of 1M     

and .2M  Let ( ),,, 12 MMHomgf R∈  let ( )fMatCf 12, BB=  and 
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( ),12, gMatCg BB=  and let A (respectively, B) be the matrix 

representing the action of X on 1M  with respect to the base 1B  

(respectively, 2M  with respect to the base 2B ). 

Remark 3.1. (1) Let B~  be the canonical base of 21 MM f×  seen as 

R-module. Then, the matrix representing the action of X on 21 MM f×  

with respect to the base B~  is .
0















B

CA f
 

(2) The modules 21 MM f×  and 21 MM g×  are isomorphic if and 

only if 













B

CA f

0
 and 














B

CA g

0
 are similar. 

The study of isomorphism classes of modules 21 MM f×  led us to 

introduce an equivalence relation on the matrices that is stronger than 
that of the similarity, and that is the object of the following definition. 

Definition 3.2. Let ( ) ( ),,,, RMBBRMAA mn ∈′∈′  and ( ),, , RMCC mn∈′  

where n and m are two nonzero natural numbers. The matrices 















B

CA

0
 and 














′

′′

B

CA

0
 are called strongly similar if there exists 

( ) ( ) ( )RGlRGlVU mn ×∈,  and ( )RMT mn,∈  such that 

.
0000





























′

′′
=




























V

TU

B

CA

B

CA

V

TU
 

For two matrices M and ,M ′  we put MsM ′~  (respectively, MsM ′~~ ) 
to mean that M and M ′  are similar (respectively, strongly similar). 

Remark 3.3. For ( ) ( )RMRMVU mn ×∈,  and ( ),, RMT mn∈  it is 

easy to see that 













V

TU

0
 is invertible if and only if U and V are 

invertible. 



MOHAMMED ELHASSANI CHARKANI et al. 36

Definition 3.4. Let ( ) 2112 .,, MMMMHomgf fR ×∈  and 21 MM g×  

are called globally isomorphic, if there exists an isomorphism of 
[ ] ,:modules- 2121 MMMMXR gf ×→×ϕ  such that  { }( ) { }.00 11 ×⊂×ϕ MM   

We have the following interesting result: 

Proposition 3.5. The modules 21 MM f×  and 21 MM g×  are globally 

isomorphic if and only if 













B

CA f

0
 and 














B

CA g

0
 are strongly 

similar. 

Proof. We denote by fX~  (respectively, gX~ ) the endomorphism 

which represents the action of X on 21 MM f×  (respectively, 

21 MM g× ). The matrix of fX~  (respectively, gX~ ) in the canonical base 

of 21 MM f×  (respectively, 21 MM g× ) is 













B

CA f

0
 (respectively, 















B

CA g

0
). 

Assume that 21 MM f×  and 21 MM g×  are globally isomorphic by 

an isomorphism .ϕ  In the canonical bases of 21 MM f×  and ,21 MM g×  

ϕ  admits a matrix of the form ,
0















V

TU
 where ( ) ( ) ×∈ RGlVU n,  

( )RGlm  and ( )., RMT mn∈  As for all ( ) ( ),..,21 mXmXMMm f ϕ=ϕ×∈  

then .~~ ϕ=ϕ oXXo gf  So, .
0000




























=




























V

TU

B

CA

B

CA

V

TU gf
 

Therefore, 













B

CA f

0
 and 














B

CA g

0
 are strongly similar. 
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Reciprocally, assume that 













B

CA f

0
 and 














B

CA g

0
 are strongly 

similar. So, there exist ( ) ( )RGlRGlVU mn ×∈,  and ( ),, RMT mn∈  such 

that .
0000




























=




























V

TU

B

CA

B

CA

V

TU gf
 Let 21: MM f×ϕ  

21 MM g×→  be the morphism of R-modules, which is represented by 

the matrix .
0















V

TU
 Then, we have .~~ ϕ=ϕ oXXo gf  So, for all 1Mm ∈  

( ) ( )...,2 mXmXMf ϕ=ϕ×  As ϕ  is obviously bijective and { }( ) ⊂×ϕ 01M  
{ },01 ×M  then 21 MM f×  and 21 MM g×  are globally isomorphic.   

It is clear that if 21 MM f×  and 21 MM g×  are globally isomorphic, 
then they are isomorphic. In the following, we show the equivalence in 
special cases. 

Proposition 3.6. The following conditions are equivalent: 

(1) The modules 21 MM f×  and 21 MM ⊕  are globally isomorphic. 

(2) The modules 21 MM f×  and 21 MM ⊕  are isomorphic. 

(3) There exists ( )RMT mn,∈  such that .fCTBAT =−  

(4) ( ) ( ).,,,, 22112211 pMMipMMi f ⊕=×  

Proof. (3) ⇔  (4): Comes from Corollary 2.4. Then, it suffices to show 
that (1) ⇔  (2) ⇔  (3). 

(1) ⇒  (2): Evident. 

(2) ⇒  (3): Let 2121: MMMM f ⊕→×ϕ  be an isomorphism of 

[ ] modules.-XR  Then, we have .~~ ϕ=ϕ oXXo  This implies that 













B

CA f

0
 

and 













B

A

0

0
 are similar. By [5] or [6], the equation fCXBAX =−  

has a solution in ( )., RM mn  
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(3) ⇒  (1): By Corollary 2.4 and Remark 2.3, 

2121: MMMM f ⊕→×ϕ  

( ) ( )22121 ,, mTmmmm +  

is an isomorphism of [ ] modules-XR  leaving 1M  globally invariant.   

Remark 3.7. If we assume that the conditions of Proposition 3.6 are 
satisfied, then 

2121: MMMM f ⊕→×ϕ  

( ) ( )22121 ,, mTmmmm +  

is an isomorphism of [ ] modules-XR  leaving 1M  globally invariant. Its 

reciprocal isomorphism is defined by 

2121
1 : MMMM f×→⊕ϕ−  

( ) ( ).,, 22121 mTmmmm −  

Proposition 3.8. If one of the following conditions is true: 

(i) The equation 0=− XABX  admits 0 as a unique solution. 

(ii) There existe R∈α  such that nIA α=  and gC  is invertible. 

(iii) There existe R∈β  such that mIB β=  and fC  is invertible, 

then the following assertions are equivalent: 

(1) 21 MM f×  and 21 MM g×  are isomorphic. 

(2) 21 MM f×  and 21 MM g×  are globally isomorphic. 
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Proof. (1) ⇒  (2): Assume that 21 MM f×  and 21 MM g×  are 

isomorphic by an isomorphism .ϕ  Then, by (2) of Remark 3.1, there exist 

( ) ( ) ( ) ( ),,, , RMTRMRMVU mnnn ∈×∈  and ( )RMR nm,∈  such that 















VT

RU
 is invertible, and 

.
00




























=




























VT

RU

B

CA

B

CA

VT

RU gf
 

But, 
















+=+

=+

+=

=

⇔


























=




























.

;

;

;

00

VCARRBUC

BVVBTC

TCAUUA

BTTA

VT

RU

B

CA

B

CA

VT

RU

gf

f

ggf  

If one of the conditions (i), (ii) or (iii) is true, then .0=T  Therefore, 

.
0

~~
0
















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CA gf
 At last, by Proposition 3.5, 21 MM f×  and 

21 MM g×  are globally isomorphic.  

(2) ⇒  (1): Obvious.   

Remark 3.9. (1) If nm =  and there exists R∈α  such that 

nIA α=  and nIB α−  is invertible or there exists R∈β  such that 

nIB β=  and nIA β−  is invertible, then the condition (i) in Proposition 3.8 

is satisfied. 

(2) In a field the equation 0=− XABX  admits 0 as a unique 
solution means that A and B have no eigenvalue in common. 
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Lemma 3.10. Let ( ) 2121, MMmm f×∈  and n be a nonzero natural 

number. Then, 

( ) ( ( ) )..,..,. 22
1

1

0
121 mXmXfXmXmmX nn

n
nn kk

k

−−
−

=
∑+=  

Proof. We use an induction on n. Let ( ) ., 2121 MMmm f×∈  For 

,1=n  we have 

( ) ( ( ) )22121 .,.,. mXmfmXmmX +=  

( ( ) )..,.. 2
1

2
11

11

0
1

1 mXmXfXmX kk

k

−−
−

=
∑+=  

Assume that 

( ) ( ( ) )..,..,. 22
1

1

0
121 mXmXfXmXmmX nn

n
nn kk

k

−−
−

=
∑+=  

Then, 

( ) ( ( ) )22
1

1

0
121

1 .,..,. mXmXfXmXXmmX nn
n

nn kk

k

−−
−

=

+ ∑+=  

( ( ) ( ) )2
1

22

1

0
1

1 .,... mXmXfmXfXmX nnn
n

n +−
−

=

+ ++= ∑ kk

k
 

( ( ) )..,.. 2
1

2
0

1
1 mXmXfXmX nn

n
n +−

=

+ ∑+= kk

k

 

  

Proposition 3.11. Let 2121: MMMM gf ×→×ϕ  be a homomorphism 

of [ ] .- odulesmXR  If g is an injective homomorphism of [ ] ,- odulesmXR  

and there exists a nonzero natural number l such that l is invertible         

in R and both 1M  and 2M  are annihilated by ,1−lX  then 

( { }) { }.00 11 ×⊂×ϕ MM  
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In particular, if furthermore ϕ  is an isomorphism, then 21 MM f×  

and 21 MM g×  are globally isomorphic by the isomorphism .ϕ  

Proof. Let ( ) { }.00, 11 ×∈ Mm  We put ( ) ( ).,0, 211 mmm ′′=ϕ  Then, 

we have 

( ) ( )0,.0, 11 mXm lϕ=ϕ  

( ( ) )22
1

1

0
1 .,.. mXmXgXmX ll

l
l ′′+′= −−

−

=
∑ kk

k
 (By Lemma 3.10) 

( )., 21 mm ′′=  

So, 

( ) .0. 2
1

1

0
=′−−

−

=
∑ mXgX l
l

kk

k
 

( ) .0. 2
1

1

0
=′⇒ −

−

=
∑ mXg l
l

k

 (Since g is a homomorphism of [ ] modules-XR ) 

( ) .0. 2
1 =′⇒ − mXgl l  

( ) .0. 2
1 =′⇒ − mXg l  (Since l is invertible in R) 

.0. 2
1 =′⇒ − mX l  (Since g is injective) 

.0... 222
1 =′=′=′⇒ − mmXmXX ll  

So, ( ) ( ).0,0, 11 mm ′=ϕ  Therefore, ( { }) { }.00 11 ×⊂×ϕ MM    

Corollary 3.12. Let ( ) ( )RMBRMA mn ∈∈ ,  and ( ),, , RMCC mn∈′  

where n and m are two nonzero natural numbers. Let ( ) ( ) ×∈ RMVU n,  

( ) ( )RMRRM mnm ,, ∈  and ( )RMT nm,∈  such that 













VT

RU
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 If C′  is invertible, BCAC ′=  and 

there exists a nonzero natural number l such that l is invertible in R, 

n
l IA =  and ,m

l IB =  then .0=T  

In particular, if ,
0

~
0
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 ′
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Proof. Just take 121 ,, Bmn RMRM ==  and 2B  the respective 

canonical bases of 1M  and ( ) ==′== gf CCfMatCCM ,, 12,2 BB  

( )gMat 12, BB  and A (respectively, B) the matrix representing the action 

of X on 1M  with respect to the base 1B  (respectively, 2M  with respect to 

the base 2B ).   

Lemma 3.13. If ( ) ( ) ( ) ( ) ( )RMTRMRRMRMVU nmmnmn ,, ,,, ∈∈×∈   

and ,
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Then, we have 
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  

Proposition 3.14. Assume that 21 MM f×  and 21 MM g×  are 

isomorphic by an isomorphism .ϕ  Let ofoiopf 11 ϕ=′  and .22 oiogopg ϕ=′  

Then, 21 MM f ′×  and 21 MM g′×  are globally isomorphic. 

Proof. Comes from Lemma 3.13.   

Remark 3.15. In general, 21 MM f×  and 21 MM g×  are globally 

isomorphic does not necessarily imply that ( ) =× 2211 ,, pMMi f  

( ).,, 2211 pMMi g×  In particular, 21 MM f×  and 21 MM g×  are 

isomorphic does not necessarily imply that ( ) =× 2211 ,, pMMi f  

( ).,, 2211 pMMi g×  Indeed, let R=R  and let 













20

32
 (respectively, 















20

12
) be the matrix representing the action of X on 21 MM f×  

(respectively, 21 MM g× ) with respect to its canonical base (as               

R-module). We have .
20

12~~
20

32


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









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


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
s  So, by Proposition 3.5, 

21 MM f×  and 21 MM g×  are globally isomorphic. But, the equation 

1322 −=×−× XX  has not any solution. By Corollary 2.4, 

( ) ( ).,,,, 22112211 pMMipMMi gf ×=/×  
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Lemma 3.16. If ( )RM
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It is clear that if 0=t  or ,0=′= cc  then .
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  

If R is an integral domain and ,1== mn  then we have the following 

proposition: 

Proposition 3.17. The following conditions are equivalent: 

(1) 21 MM f×  and 21 MM g×  are isomorphic. 

(2) 21 MM f×  and 21 MM g×  are globally isomorphic. 
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Proof. Clear by (2) of Remark 3.1, Lemma 3.16 and Proposition 3.5.  

  
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