EXTENSIONS OF MODULES OVER POLYNOMIAL RINGS

MOHAMMED ELHASSANI CHARKANI and AHMED NAJIM

Department of Mathematics Faculty of Science Dhar Mahraz Sidi Mohamed Ben Abdellah University P. O. Box 1796 Atlas 30000 Fez Morocco e-mail: mohammed.charkanielhassani@usmba.ac.ma ahmed.najim@usmba.ac.ma

Abstract

For a commutative and unitary ring R, we characterize the classes of a classical equivalence relation defined on extensions of an R[X]-module, which is R-projective by another R[X]-module. The modules that are extensions of an R[X]-module M_2 , which is R-projective by an R[X]-module M_1 have a fairly simple form which we denote by $M_1 \times_f M_2$, where f is an R-homomorphism from M_2 to M_1 . For R, M_1 , M_2 and f as in the foregoing, but M_2 is not necessarily R-projective, we search to classify the R[X]-modules $M_1 \times_f M_2$.

© 2015 Scientific Advances Publishers

²⁰¹⁰ Mathematics Subject Classification: 13B25, 13C05.

Keywords and phrases: extension of modules, globally isomorphic modules, polynomial ring, strongly similar matrices.

Received July 31, 2015

1. Introduction

All rings considered in this paper are supposed to be with unit. Let R be a commutative ring. Let N and L be two R-modules. We recall (see [1, 7, 9]) that an extension of L by N is a triple (u, M, v), where M is an R-module and u, v are R-module homomorphisms such that the sequence

$$O \to N \xrightarrow{u} M \xrightarrow{v} L \to O$$

is exact. Two extensions (u, M, v) and (u', M', v') of L by N are equivalent if there exists an isomorphism of R-modules $\varphi: M \to M'$ such that the following diagram is commutative:

For this equivalence relation, the class of an extension (u, M, v) of L by N is denoted by $\overline{(u, M, v)}$.

On the group rings, one of the technics used to study the module extensions consists to show that a module, which is extension of a module L by another module N - under some conditions - can be written in a simple form that is denoted by $N \times_{\alpha} L$, where α is a cocycle or a derivation (see, for example, [2], [3], [8]). For the polynomial rings, this form is much simpler, indeed instead of cocycles or derivations we can take homomorphisms of R-modules.

The polynomial ring with coefficients in R will be denoted by R[X].

In this paper, we study the extensions of R[X]-modules. We search essentially to characterize these extensions. In Section 2, we characterize the classes of this equivalence relation defined on extensions of an R[X]-modules M_2 , which is *R*-projective by an R[X]-module M_1 . As we already said, the modules that are extensions of an R[X]-module M_2 , which is *R*-projective by an R[X]-modules M_1 have a fairly simple form which we denote by $M_1 \times_f M_2$, where *f* is an *R*-homomorphism from M_2 to M_1 . In Section 3, for M_1 , M_2 and *f* as in the foregoing, but M_2 is not necessarily *R*-projective, we search to classify the R[X]-modules $M_1 \times_f M_2$. In the same time, we give some properties of these modules.

2. Extension Equivalence of Modules Over Polynomial Rings

Let R be a commutative ring. Let M_1 and M_2 be two R[X]-modules. Let $f \in Hom_R(M_2, M_1)$, where $Hom_R(M_2, M_1)$ is the set of all R-module morphisms from the R-module M_2 to the R-module M_1 . Then, we can define a structure of R[X]-module on $M_1 \times M_2$ by $\forall (m_1, m_2) \in M_1 \times M_2$, $X.(m_1, m_2) = (X.m_1 + f(m_2), X.m_2)$. The module $M_1 \times M_2$ equipped with this structure of R[X]-module will be denoted by $M_1 \times_f M_2$. In this case, the following sequence $O \to M_1 \xrightarrow{i_1} M_1 \times_f M_2$ $p_2 \to O$, is an exact sequence of R[X]-modules, where i_1 is the first injection and p_2 is the second projection.

Theorem 2.1. Let $O \to M_1 \xrightarrow{u} M \xrightarrow{v} M_2 \to O$ be an exact sequence of R[X]-modules. If M_2 is R-projective, then there exists $f \in Hom_R(M_2, M_1)$ such that $\overline{(u, M, v)} = \overline{(i_1, M_1 \times_f M_2, p_2)}$.

Proof. $O \to M_1 \xrightarrow{u} M \xrightarrow{v} M_2 \to O$ is exact and M_2 is projective as *R*-module. Then, there exist $v' \in Hom_R(M_2, M)$ and $u' \in Hom_R(M, M_1)$ such that $u'ou = id_{M_1}$ and $vov' = id_{M_2}$. It is well-known that $\theta: M \to M_1 \oplus M_2$ defined by $m \mapsto (u'(m), v(m))$ is an isomorphism of *R*-modules, and $\theta^{-1} : M_1 \oplus M_2 \to M$ is defined by $(m_1, m_2) \mapsto m + u(x)$, where *m* is such that $v(m) = m_2$ and $x \in M_1$ is such that $x = m_1 - u'(m)$. We define a structure of R[X]-module on $M_1 \oplus M_2$ by

$$\forall (m_1, m_2) \in M_1 \oplus M_2, X.(m_1, m_2) = \theta(X.\theta^{-1}((m_1, m_2))).$$

Then,

$$\begin{aligned} X.(m_1, m_2) &= \theta(X.\theta^{-1}((m_1, m_2))) \\ &= \theta(X.(m + u(x))) \\ &= \theta(X.m + X.u(x)) \\ &= (u'(X.m + X.u(x)), v(X.m + X.u(x))) \\ &= (u'(X.m) + X.x, X.m_2) \\ &= (X.m_1 + u'(X.m) - X.u'(m), X.m_2). \end{aligned}$$

We have $v(m) = m_2$, so there exists $m' \in \ker(v)$ such that $v'(m_2) = m + m'$. As $\ker(v) = \operatorname{Im}(u)$, then there exists $m'_2 \in M_1$ such that $v'(m_2) = m + u(m'_2)$. So,

$$\begin{aligned} u'(X.m) - X.u'(m) &= u'(X.(v'(m_2) - u(m'_2))) - X.u'(v'(m_2) - u(m'_2)) \\ &= u'(X.v'(m_2)) - u'(X.u(m'_2)) - X.(u'ov'(m_2)) + X.(u'ou(m'_2)) \\ &= u'(X.v'(m_2)) - X.(u'ov'(m_2)). \end{aligned}$$

Therefore,

$$\begin{split} X.(m_1, \ m_2) &= (X.m_1 + u'(X.v'(m_2)) - X.(u'ov'(m_2)), \ X.m_2) \\ &= (X.m_1 + f(m_2), \ X.m_2), \end{split}$$

where $f \in Hom_R(M_2, M_1)$ is defined by

$$\forall m_2 \in M_2, \quad f(m_2) = u'(X.v'(m_2)) - X.(u'ov'(m_2)).$$

 $\theta: M \to M_1 \times_f M_2$ is an isomorphism of R[X]-modules and we have $\theta o u = i_1$ and $p_2 o \theta = v$. **Theorem 2.2.** Let $f, g \in Hom_R(M_2, M_1)$, where M_1 and M_2 are two R[X]-modules. Then, the following conditions are equivalent:

(1) $\overline{(i_1, M_1 \times_f M_2, p_2)} = \overline{(i_1, M_1 \times_g M_2, p_2)}.$

(2) There exists $h \in Hom_R(M_2, M_1)$ such that, for all $m_2 \in M_2$,

$$f(m_2) + h(X.m_2) = X.h(m_2) + g(m_2)$$

Proof. (1) \Rightarrow (2): If $\overline{(i_1, M_1 \times_f M_2, p_2)} = \overline{(i_1, M_1 \times_g M_2, p_2)}$, then there exists a homomorphism of R[X]-modules $\varphi : M_1 \times_f M_2 \to M_1 \times_g M_2$ such that $\varphi oi_1 = i_1$ and $p_2 o \varphi = p_2$. Let $(m_1, m_2) \in M_1 \times M_2$. We have

$$\varphi((m_1, 0)) = \varphi o i_1(m_1)$$

= $i_1(m_1)$
= $(m_1, 0).$

We put $\varphi((0, m_2)) = (m'_1, m'_2)$. As $p_2 o \varphi = p_2$, then $m'_2 = m_2$. We define an application $h: M_2 \to M_1$ by $h(m_2) = m'_1$. Then, we have $\varphi((m_1, m_2)) = (m_1 + h(m_2), m_2)$. We first show that h is a homomorphism of *R*-modules. Let $m_2, m'_2 \in M_2$ and let $r \in R$. $\varphi((0, m_2 + m'_2)) = (h(m_2 + m'_2), m_2 + m'_2)$. But,

$$\varphi((0, m_2 + m'_2)) = \varphi((0, m_2)) + \varphi((0, m'_2))$$
$$= (h(m_2), m_2) + (h(m'_2), m'_2)$$
$$= (h(m_2) + h(m'_2), m_2 + m'_2).$$

So, $h(m_2 + m'_2) = h(m_2) + h(m'_2)$. We have also $\varphi((0, r.m_2)) = (h(r.m_2), r.m_2)$. But,

$$\varphi((0, r.m_2)) = \varphi(r(0, m_2))$$

= $r\varphi((0, m_2))$
= $r(h(m_2), m_2)$
= $(r.h(m_2), r.m_2).$

So, $h(r.m_2) = r.h(m_2)$. Therefore, $h \in Hom_R(M_2, M_1)$. Let $m_2 \in M_2$. $\varphi(X.(0, m_2)) = X.\varphi((0, m_2))$. But,

$$\varphi(X.(0, m_2)) = \varphi(f(m_2), X.m_2))$$
$$= (f(m_2) + h(X.m_2), X.m_2)$$

and

$$\begin{aligned} X.\varphi((0, m_2)) &= X.(h(m_2), m_2) \\ &= (X.h(m_2). g(m_2), X.m_2) \end{aligned}$$

Therefore, $\forall m_2 \in M_2$, $f(m_2) + h(X.m_2) = X.h(m_2) + g(m_2)$.

(2) \Rightarrow (1): Assume that there exists $h \in Hom_R(M_2, M_1)$ such that, $\forall m_2 \in M_2, f(m_2) + h(X.m_2) = X.h(m_2) + g(m_2)$. We define an application $\varphi : M_1 \times_f M_2 \rightarrow M_1 \times_g M_2$ by $\forall (m_1, m_2) \in M_1 \times_f M_2, \varphi((m_1, m_2)) = (m_1 + h(m_2), m_2)$. We easily see that φ is a homomorphism of *R*-modules. Let $(m_1, m_2) \in M_1 \times_f M_2$.

$$\varphi(X.(m_1, m_2)) = \varphi((X.m_1 + f(m_2), X.m_2))$$

= $(X.m_1 + f(m_2) + h(X.m_2), X.m_2)$
= $(X.m_1 + X.h(m_2) + g(m_2), X.m_2)$
= $(X.(m_1 + h(m_2)) + g(m_2), X.m_2)$
= $X.(m_1 + h(m_2), m_2)$
= $X.\varphi((m_1, m_2)).$

Therefore, φ is a homomorphism of R[X]-modules, and it is easy to see that $\varphi o i_1 = i_1$ and $p_2 o \varphi = p_2$.

Remark 2.3. If we assume that the conditions of Theorem 2.2 are satisfied, then we have seen in the proof of this theorem, that the homomorphism φ such that the following diagram of R[X]-modules is commutative:

is defined by $\forall (m_1, m_2) \in M_1 \times_f M_2$, $\varphi((m_1, m_2)) = (m_1 + h(m_2), m_2)$. (Here, we kept the notation of Theorem 2.2.) φ is necessarily an isomorphism of R[X]-modules and φ^{-1} is defined by $\forall (m_1, m_2) \in M_1 \times_g M_2$, $\varphi^{-1}((m_1, m_2)) = (m_1 - h(m_2), m_2)$.

Let M_1 and M_2 be two R[X]-modules that are R-free of finite rank. Let \mathbf{B}_1 and \mathbf{B}_2 be two bases of M_1 and M_2 , respectively. Let $C_f = Mat_{\mathbf{B}_2,\mathbf{B}_1}(f)$ and $C_g = Mat_{\mathbf{B}_2,\mathbf{B}_1}(g)$ be the matrices of f and g, respectively, with respect to the bases \mathbf{B}_2 and \mathbf{B}_1 , and let A (respectively, B) be the matrix representing the action of X on M_1 with respect to the base \mathbf{B}_1 (respectively, M_2 with respect to the base \mathbf{B}_2).

Corollary 2.4. *The following conditions are equivalent:*

In the rest of this section, we give some interesting results on the R[X]-modules $M_1 \times_f M_2$, where we use the following notations:

$$\operatorname{Ker}(f) = \{x \in M_1 \mid f(x) = 0\}$$
 and $\operatorname{Im}(f) = \{f(x) \mid x \in M_1\}.$

Proposition 2.5. *The following assertions are true:*

(1) Each direct summand of M_2 included in Ker(f) is a direct summand of $M_1 \times_f M_2$.

(2) If N_1 is a direct summand of M_1 and $\text{Im}(f) \subseteq N_1$, then $N_1 \times_f M_2$ is a direct summand of $M_1 \times_f M_2$.

Proof. (1) If $M_2 = M'_2 \oplus M''_2$, where M'_2 and M''_2 are two R[X]-submodules of M_2 such that $M'_2 \subset \text{Ker}(f)$, then $M_1 \times_f M_2 = M_1 \times_f M''_2 \oplus \{0\} \times_f M'_2$.

(2) If N_1 is an R[X]-submodule of M_1 such that $\operatorname{Im}(f) \subseteq N_1$, and there exists an R[X]-submodule of M_1 such that $M_1 = N_1 \oplus N'_1$, then $M_1 \times_f M_2 = N'_1 \times_f \{0\} \oplus N_1 \times_f M_2$.

Corollary 2.6. (1) If f is zero, then $M_1 \times_f M_2$ is a decomposable R[X]-module.

(2) If Im(f) is a direct summand of M_1 , then $\text{Im}(f) \times_f M_2$ is a direct summand of $M_1 \times_f M_2$.

Proof. Obvious.

3. Isomorphism Classes

Let R be a commutative ring. Let $M_{n,m}(R)$, $M_n(R)$, and $Gl_n(R)$ denote, respectively, the set of the $n \times m$ matrices, the set of the $n \times n$ matrices, and the set of the $n \times n$ invertible matrices, with entries in R, where m and n are two nonzero natural numbers.

Let M_1 and M_2 be two R[X]-modules that are R-free of respective finite rank n and m. We assume that $M_1 = R^n$ and $M_2 = R^m$ (as R-modules). Let \mathbf{B}_1 and \mathbf{B}_2 be the respective canonical bases of M_1 and M_2 . Let $f, g \in Hom_R(M_2, M_1)$, let $C_f = Mat_{\mathbf{B}_2, \mathbf{B}_1}(f)$ and

 $C_g = Mat_{\mathbf{B}_2, \mathbf{B}_1}(g)$, and let A (respectively, B) be the matrix representing the action of X on M_1 with respect to the base \mathbf{B}_1 (respectively, M_2 with respect to the base \mathbf{B}_2).

Remark 3.1. (1) Let $\tilde{\mathbf{B}}$ be the canonical base of $M_1 \times_f M_2$ seen as *R*-module. Then, the matrix representing the action of X on $M_1 \times_f M_2$ with respect to the base $\tilde{\mathbf{B}}$ is $\begin{pmatrix} A & C_f \\ 0 & B \end{pmatrix}$.

(2) The modules $M_1 \times_f M_2$ and $M_1 \times_g M_2$ are isomorphic if and only if $\begin{pmatrix} A & C_f \\ 0 & B \end{pmatrix}$ and $\begin{pmatrix} A & C_g \\ 0 & B \end{pmatrix}$ are similar.

The study of isomorphism classes of modules $M_1 \times_f M_2$ led us to introduce an equivalence relation on the matrices that is stronger than that of the similarity, and that is the object of the following definition.

Definition 3.2. Let $A, A' \in M_n(R), B, B' \in M_m(R)$, and $C, C' \in M_{n,m}(R)$, where n and m are two nonzero natural numbers. The matrices $\begin{pmatrix} A & C \\ 0 & B \end{pmatrix}$ and $\begin{pmatrix} A' & C' \\ 0 & B' \end{pmatrix}$ are called strongly similar if there exists $(U, V) \in Gl_n(R) \times Gl_m(R)$ and $T \in M_{n,m}(R)$ such that

$\int U$	$T \setminus (A$	C $(A'$	$C' \Big) \Big(U$	T
$\left(0 \right)$	$V \Big \Big _0$	$B = \begin{bmatrix} 0 \end{bmatrix}$	$B' \bigg) \Big _0$	V

For two matrices M and M', we put $M \tilde{s} M'$ (respectively, $M \tilde{s} M'$) to mean that M and M' are similar (respectively, strongly similar).

Remark 3.3. For $U, V \in M_n(R) \times M_m(R)$ and $T \in M_{n,m}(R)$, it is

easy to see that $\begin{pmatrix} U & T \\ & & \\ 0 & & V \end{pmatrix}$ is invertible if and only if U and V are

invertible.

Definition 3.4. Let $f, g \in Hom_R(M_2, M_1)$. $M_1 \times_f M_2$ and $M_1 \times_g M_2$ are called globally isomorphic, if there exists an isomorphism of R[X]-modules $\varphi \colon M_1 \times_f M_2 \to M_1 \times_g M_2$, such that $\varphi(M_1 \times \{0\}) \subset M_1 \times \{0\}$.

We have the following interesting result:

Proposition 3.5. The modules $M_1 \times_f M_2$ and $M_1 \times_g M_2$ are globally isomorphic if and only if $\begin{pmatrix} A & C_f \\ 0 & B \end{pmatrix}$ and $\begin{pmatrix} A & C_g \\ 0 & B \end{pmatrix}$ are strongly similar.

Proof. We denote by \widetilde{X}_f (respectively, \widetilde{X}_g) the endomorphism which represents the action of X on $M_1 \times_f M_2$ (respectively, $M_1 \times_g M_2$). The matrix of \widetilde{X}_f (respectively, \widetilde{X}_g) in the canonical base of $M_1 \times_f M_2$ (respectively, $M_1 \times_g M_2$) is $\begin{pmatrix} A & C_f \\ 0 & B \end{pmatrix}$ (respectively, $\begin{pmatrix} A & C_g \\ 0 & B \end{pmatrix}$).

Assume that $M_1 \times_f M_2$ and $M_1 \times_g M_2$ are globally isomorphic by an isomorphism φ . In the canonical bases of $M_1 \times_f M_2$ and $M_1 \times_g M_2$, φ admits a matrix of the form $\begin{pmatrix} U & T \\ 0 & V \end{pmatrix}$, where $(U, V) \in Gl_n(R) \times Gl_m(R)$ and $T \in M_{n,m}(R)$. As for all $m \in M_1 \times_f M_2$, $\varphi(X.m) = X.\varphi(m)$, then $\varphi o \widetilde{X}_f = \widetilde{X}_g o \varphi$. So, $\begin{pmatrix} U & T \\ 0 & V \end{pmatrix} \begin{pmatrix} A & C_f \\ 0 & B \end{pmatrix} = \begin{pmatrix} A & C_g \\ 0 & B \end{pmatrix} \begin{pmatrix} U & T \\ 0 & V \end{pmatrix}$. Therefore, $\begin{pmatrix} A & C_f \\ 0 & B \end{pmatrix}$ and $\begin{pmatrix} A & C_g \\ 0 & B \end{pmatrix}$ are strongly similar. Reciprocally, assume that $\begin{pmatrix} A & C_f \\ 0 & B \end{pmatrix}$ and $\begin{pmatrix} A & C_g \\ 0 & B \end{pmatrix}$ are strongly similar. So, there exist $U, V \in Gl_n(R) \times Gl_m(R)$ and $T \in M_{n,m}(R)$, such that $\begin{pmatrix} U & T \\ 0 & V \end{pmatrix} \begin{pmatrix} A & C_f \\ 0 & B \end{pmatrix} = \begin{pmatrix} A & C_g \\ 0 & B \end{pmatrix} \begin{pmatrix} U & T \\ 0 & V \end{pmatrix}$. Let $\varphi : M_1 \times_f M_2$ $\rightarrow M_1 \times_g M_2$ be the morphism of R-modules, which is represented by the matrix $\begin{pmatrix} U & T \\ 0 & V \end{pmatrix}$. Then, we have $\varphi o \widetilde{X}_f = \widetilde{X}_g o \varphi$. So, for all $m \in M_1$ $\times_f M_2, \varphi(X.m) = X.\varphi(m)$. As φ is obviously bijective and $\varphi(M_1 \times \{0\}) \subset$ $M_1 \times \{0\}$, then $M_1 \times_f M_2$ and $M_1 \times_g M_2$ are globally isomorphic. \Box

It is clear that if $M_1 \times_f M_2$ and $M_1 \times_g M_2$ are globally isomorphic, then they are isomorphic. In the following, we show the equivalence in special cases.

Proposition 3.6. The following conditions are equivalent:

- (1) The modules $M_1 \times_f M_2$ and $M_1 \oplus M_2$ are globally isomorphic.
- (2) The modules $M_1 \times_f M_2$ and $M_1 \oplus M_2$ are isomorphic.
- (3) There exists $T \in M_{n,m}(R)$ such that $AT TB = C_f$.
- (4) $\overline{(i_1, M_1 \times_f M_2, p_2)} = \overline{(i_1, M_1 \oplus M_2, p_2)}.$

Proof. (3) \Leftrightarrow (4): Comes from Corollary 2.4. Then, it suffices to show that (1) \Leftrightarrow (2) \Leftrightarrow (3).

(1) \Rightarrow (2): Evident.

(2) \Rightarrow (3): Let $\varphi: M_1 \times_f M_2 \to M_1 \oplus M_2$ be an isomorphism of

R[X]-modules. Then, we have $\varphi o \widetilde{X} = \widetilde{X} o \varphi$. This implies that $\begin{pmatrix} A & C_f \\ & & \\ 0 & & B \end{pmatrix}$

and $\begin{pmatrix} A & 0 \\ & B \end{pmatrix}$ are similar. By [5] or [6], the equation $AX - XB = C_f$

has a solution in $M_{n,m}(R)$.

(3) \Rightarrow (1): By Corollary 2.4 and Remark 2.3,

$$\begin{split} \varphi &: M_1 \times_f M_2 \to M_1 \oplus M_2 \\ & (m_1, m_2) \mapsto (m_1 + Tm_2, m_2) \end{split}$$

is an isomorphism of R[X]-modules leaving M_1 globally invariant. \Box

Remark 3.7. If we assume that the conditions of Proposition 3.6 are satisfied, then

$$\begin{split} \varphi &: M_1 \times_f M_2 \to M_1 \oplus M_2 \\ & (m_1, m_2) \mapsto (m_1 + Tm_2, m_2) \end{split}$$

is an isomorphism of R[X]-modules leaving M_1 globally invariant. Its reciprocal isomorphism is defined by

$$\varphi^{-1} : M_1 \oplus M_2 \to M_1 \times_f M_2$$
$$(m_1, m_2) \mapsto (m_1 - Tm_2, m_2).$$

Proposition 3.8. If one of the following conditions is true:

(i) The equation BX - XA = 0 admits 0 as a unique solution.

(ii) There exists $\alpha \in R$ such that $A = \alpha I_n$ and C_g is invertible.

(iii) There exists $\beta \in R$ such that $B = \beta I_m$ and C_f is invertible,

then the following assertions are equivalent:

(1) $M_1 \times_f M_2$ and $M_1 \times_g M_2$ are isomorphic.

(2) $M_1 \times_f M_2$ and $M_1 \times_g M_2$ are globally isomorphic.

Proof. (1) \Rightarrow (2): Assume that $M_1 \times_f M_2$ and $M_1 \times_g M_2$ are isomorphic by an isomorphism φ . Then, by (2) of Remark 3.1, there exist $(U, V) \in M_n(R) \times M_n(R), T \in M_{n,m}(R)$, and $R \in M_{m,n}(R)$ such that $\begin{pmatrix} U & R \\ T & V \end{pmatrix}$ is invertible, and $(U = R) (A = C_f) (A = C_g) (U = R)$

$$\begin{pmatrix} U & R \\ T & V \end{pmatrix} \begin{pmatrix} A & C_f \\ 0 & B \end{pmatrix} = \begin{pmatrix} A & C_g \\ 0 & B \end{pmatrix} \begin{pmatrix} U & R \\ T & V \end{pmatrix}$$

But,

$$\begin{pmatrix} U & R \\ T & V \end{pmatrix} \begin{pmatrix} A & C_f \\ 0 & B \end{pmatrix} = \begin{pmatrix} A & C_g \\ 0 & B \end{pmatrix} \begin{pmatrix} U & R \\ T & V \end{pmatrix} \Leftrightarrow \begin{cases} TA = BT; \\ UA = AU + C_gT; \\ TC_f + VB = BV; \\ UC_f + RB = AR + C_gV \end{cases}$$

If one of the conditions (i), (ii) or (iii) is true, then T = 0. Therefore, $\begin{pmatrix} A & C_f \\ 0 & B \end{pmatrix} \approx \begin{pmatrix} A & C_g \\ 0 & B \end{pmatrix}$. At last, by Proposition 3.5, $M_1 \times_f M_2$ and

 $M_1 \times_g M_2$ are globally isomorphic.

(2)
$$\Rightarrow$$
 (1): Obvious.

Remark 3.9. (1) If m = n and there exists $\alpha \in R$ such that $A = \alpha I_n$ and $B - \alpha I_n$ is invertible or there exists $\beta \in R$ such that $B = \beta I_n$ and $A - \beta I_n$ is invertible, then the condition (i) in Proposition 3.8 is satisfied.

(2) In a field the equation BX - XA = 0 admits 0 as a unique solution means that *A* and *B* have no eigenvalue in common.

Lemma 3.10. Let $(m_1, m_2) \in M_1 \times_f M_2$ and n be a nonzero natural number. Then,

$$X^{n}.(m_{1}, m_{2}) = (X^{n}.m_{1} + \sum_{k=0}^{n-1} X^{n-1-k} f(X^{k}.m_{2}), X^{n}.m_{2}).$$

Proof. We use an induction on *n*. Let $(m_1, m_2) \in M_1 \times_f M_2$. For n = 1, we have

$$\begin{split} X.(m_1, \ m_2) &= (X.m_1 + f(m_2), \ X.m_2) \\ &= (X^1.m_1 + \sum_{k=0}^{1-1} X^{1-1-k} f(X^k.m_2), \ X^1.m_2). \end{split}$$

Assume that

$$X^{n}.(m_{1}, m_{2}) = (X^{n}.m_{1} + \sum_{k=0}^{n-1} X^{n-1-k} f(X^{k}.m_{2}), X^{n}.m_{2}).$$

Then,

$$\begin{aligned} X^{n+1}.(m_1, m_2) &= X(X^n.m_1 + \sum_{k=0}^{n-1} X^{n-1-k} f(X^k.m_2), X^n.m_2) \\ &= (X^{n+1}.m_1 + \sum_{k=0}^{n-1} X^{n-k} f(X^k.m_2) + f(X^n.m_2), X^{n+1}.m_2) \\ &= (X^{n+1}.m_1 + \sum_{k=0}^n X^{n-k} f(X^k.m_2), X^{n+1}.m_2). \end{aligned}$$

Proposition 3.11. Let $\varphi: M_1 \times_f M_2 \to M_1 \times_g M_2$ be a homomorphism of R[X]-modules. If g is an injective homomorphism of R[X]-modules, and there exists a nonzero natural number l such that l is invertible in R and both M_1 and M_2 are annihilated by $X^l - 1$, then $\varphi(M_1 \times \{0\}) \subset M_1 \times \{0\}.$ In particular, if furthermore φ is an isomorphism, then $M_1 \times_f M_2$ and $M_1 \times_g M_2$ are globally isomorphic by the isomorphism φ .

Proof. Let $(m_1, 0) \in M_1 \times \{0\}$. We put $\varphi(m_1, 0) = (m'_1, m'_2)$. Then, we have

$$\begin{split} \varphi(m_1, \ 0) &= \varphi(X^l.m_1, \ 0) \\ &= (X^l.m_1' + \sum_{k=0}^{l-1} X^{l-1-k} g(X^k.m_2'), \ X^l.m_2') \text{ (By Lemma 3.10)} \\ &= (m_1', \ m_2'). \end{split}$$

So,

$$\begin{split} \sum_{k=0}^{l-1} X^{l-1-k} g(X^k.m_2') &= 0. \\ \Rightarrow \sum_{k=0}^{l-1} g(X^{l-1}.m_2') &= 0. \text{ (Since } g \text{ is a homomorphism of } R[X]\text{-modules}) \\ \Rightarrow lg(X^{l-1}.m_2') &= 0. \\ \Rightarrow g(X^{l-1}.m_2') &= 0. \text{ (Since } l \text{ is invertible in } R) \\ \Rightarrow X^{l-1}.m_2' &= 0. \text{ (Since } g \text{ is injective}) \\ \Rightarrow X.X^{l-1}.m_2' &= X^l.m_2' &= m_2' &= 0. \\ \text{So, } \varphi(m_1, 0) &= (m_1', 0). \text{ Therefore, } \varphi(M_1 \times \{0\}) \subset M_1 \times \{0\}. \end{split}$$

Corollary 3.12. Let $A \in M_n(R)$, $B \in M_m(R)$ and $C, C' \in M_{n,m}(R)$, where n and m are two nonzero natural numbers. Let $(U, V) \in M_n(R) \times M_m(R)$, $R \in M_{n,m}(R)$ and $T \in M_{m,n}(R)$ such that $\begin{pmatrix} U & R \\ T & V \end{pmatrix}$

$$\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} = \begin{pmatrix} A & C' \\ 0 & B \end{pmatrix} \begin{pmatrix} U & R \\ T & V \end{pmatrix}.$$
 If C' is invertible, $AC = C'B$ and

there exists a nonzero natural number l such that l is invertible in R, $A^{l} = I_{n}$ and $B^{l} = I_{m}$, then T = 0.

In particular, if
$$\begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \widetilde{s} \begin{pmatrix} A & C' \\ 0 & B \end{pmatrix}$$
, then $\begin{pmatrix} A & C_f \\ 0 & B \end{pmatrix} \widetilde{\widetilde{s}}$
 $\begin{pmatrix} A & C_g \\ 0 & B \end{pmatrix}$.

Proof. Just take $M_1 = R^n$, $M_2 = R^m$, \mathbf{B}_1 and \mathbf{B}_2 the respective canonical bases of M_1 and M_2 , $C = C_f = Mat_{\mathbf{B}_2, \mathbf{B}_1}(f)$, $C' = C_g = Mat_{\mathbf{B}_2, \mathbf{B}_1}(g)$ and A (respectively, B) the matrix representing the action of X on M_1 with respect to the base \mathbf{B}_1 (respectively, M_2 with respect to the base \mathbf{B}_2).

Lemma 3.13. If $(U,V) \in M_n(R) \times M_m(R), R \in M_{n,m}(R), T \in M_{m,n}(R)$

$$and \begin{pmatrix} U & R \\ T & V \end{pmatrix} \begin{pmatrix} A & C_f \\ 0 & B \end{pmatrix} = \begin{pmatrix} A & C_g \\ 0 & B \end{pmatrix} \begin{pmatrix} U & R \\ T & V \end{pmatrix}, then \begin{pmatrix} A & UC_f \\ 0 & B \end{pmatrix}$$
$$\tilde{\tilde{s}} \begin{pmatrix} A & C_g V \\ 0 & B \end{pmatrix}.$$

Proof.

$$\begin{pmatrix} U & R \\ T & V \end{pmatrix} \begin{pmatrix} A & C_f \\ 0 & B \end{pmatrix} = \begin{pmatrix} A & C_g \\ 0 & B \end{pmatrix} \begin{pmatrix} U & R \\ T & V \end{pmatrix}$$
$$\Rightarrow UC_f + RB = AR + C_g V.$$

42

Then, we have

$$\begin{pmatrix} I_n & R \\ 0 & I_m \end{pmatrix} \begin{pmatrix} A & UC_f \\ 0 & B \end{pmatrix} \begin{pmatrix} I_n & -R \\ 0 & I_m \end{pmatrix} = \begin{pmatrix} A & C_g V \\ 0 & B \end{pmatrix}.$$

$$\operatorname{As} \begin{pmatrix} I_n & R \\ 0 & I_m \end{pmatrix}^{-1} = \begin{pmatrix} I_n & -R \\ 0 & I_m \end{pmatrix}, \text{ then } \begin{pmatrix} A & UC_f \\ 0 & B \end{pmatrix} \widetilde{s} \begin{pmatrix} A & C_g V \\ 0 & B \end{pmatrix}.$$

Proposition 3.14. Assume that $M_1 \times_f M_2$ and $M_1 \times_g M_2$ are isomorphic by an isomorphism φ . Let $f' = p_1 \varphi \varphi_1 \varphi_1$ and $g' = g \varphi_2 \varphi \varphi_2$. Then, $M_1 \times_{f'} M_2$ and $M_1 \times_{g'} M_2$ are globally isomorphic.

Proof. Comes from Lemma 3.13.

Remark 3.15. In general, $M_1 \times_f M_2$ and $M_1 \times_g M_2$ are globally isomorphic does not necessarily imply that $\overline{(i_1, M_1 \times_f M_2, p_2)} = \overline{(i_1, M_1 \times_g M_2, p_2)}$. In particular, $M_1 \times_f M_2$ and $M_1 \times_g M_2$ are isomorphic does not necessarily imply that $\overline{(i_1, M_1 \times_f M_2, p_2)} = \overline{(i_1, M_1 \times_g M_2, p_2)}$. Indeed, let $R = \mathbb{R}$ and let $\begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}$ (respectively, $\begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$) be the matrix representing the action of X on $M_1 \times_f M_2$ (respectively, $M_1 \times_g M_2$) with respect to its canonical base (as R-module). We have $\begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix} \widetilde{s} \begin{pmatrix} 2 & 1 \\ 0 & 2 \end{pmatrix}$. So, by Proposition 3.5, $M_1 \times_f M_2$ and $M_1 \times_g M_2$ are globally isomorphic. But, the equation $2 \times X - X \times 2 = 3 - 1$ has not any solution. By Corollary 2.4,

 $\overline{(i_1, M_1 \times_f M_2, p_2)} \neq \overline{(i_1, M_1 \times_g M_2, p_2)}.$

Lemma 3.16. If
$$\begin{pmatrix} a & c \\ 0 & b \end{pmatrix}$$
, $\begin{pmatrix} a & c' \\ 0 & b \end{pmatrix} \in M_2(R)$ and R is an integral

domain, then

$$\begin{pmatrix} a & c \\ 0 & b \end{pmatrix} \widetilde{s} \begin{pmatrix} a & c' \\ 0 & v \end{pmatrix} \Rightarrow \begin{pmatrix} a & c \\ 0 & b \end{pmatrix} \widetilde{s} \begin{pmatrix} a & c' \\ 0 & v \end{pmatrix}.$$
Proof. If $\begin{pmatrix} a & c \\ 0 & b \end{pmatrix} \widetilde{s} \begin{pmatrix} a & c' \\ 0 & v \end{pmatrix}$, then there exists $\begin{pmatrix} u & r \\ t & v \end{pmatrix} \in Gl_2(R)$

such that

$$\begin{pmatrix} u & r \\ t & v \end{pmatrix} \begin{pmatrix} a & c \\ 0 & b \end{pmatrix} = \begin{pmatrix} a & c' \\ 0 & b \end{pmatrix} \begin{pmatrix} u & r \\ t & v \end{pmatrix}.$$

 \mathbf{Or}

$$\begin{pmatrix} u & r \\ t & v \end{pmatrix} \begin{pmatrix} a & c \\ 0 & b \end{pmatrix} = \begin{pmatrix} a & c' \\ 0 & b \end{pmatrix} \begin{pmatrix} u & r \\ t & v \end{pmatrix} \Leftrightarrow \begin{cases} ta = bt; \\ ua = au + c't; \\ tc + vb = bv; \\ uc + rb = ar + c'v. \end{cases}$$

$$\Rightarrow t = 0 \text{ or } c = c' = 0.$$

It is clear that if t = 0 or c = c' = 0, then $\begin{pmatrix} a & c \\ & b \end{pmatrix} \tilde{s} \begin{pmatrix} a & c' \\ & b \end{pmatrix}$. \Box

If *R* is an integral domain and n = m = 1, then we have the following proposition:

Proposition 3.17. The following conditions are equivalent:

- (1) $M_1 \times_f M_2$ and $M_1 \times_g M_2$ are isomorphic.
- (2) $M_1 \times_f M_2$ and $M_1 \times_g M_2$ are globally isomorphic.

44

Proof. Clear by (2) of Remark 3.1, Lemma 3.16 and Proposition 3.5.

References

- H. Cartan and S. Eilenberg, Homological Algebra, 7th Edition, Princeton University Press, New Jersey, 1973.
- [2] M. E. Charkani and S. Bouhamidi, Modular representation of loewy length two, International Journal of Mathematics and Mathematical Sciences 70 (2003), 4399-4408.
- [3] C. W. Curtis and I. Reiner, Methods of Representation Theory, Vol. I, Wiley-Interscience, New York, 1981.
- [4] R. B. Feinberg, Similarity of partitioned matrices, J. Res. Nat. Bur. Standards Sect. B 79B (1975), 117-125.
- [5] W. H. Gustafson, Roths theorems over commutative rings, Linear Algebra Appl. 23 (1979), 245-251.
- [6] W. H. Gustafson, J. Zelmanowitz, On matrix equivalence and matrix equations, Linear Algebra Appl. 27 (1979), 219-224.
- [7] P. J. Hilton and U. Stammbach, A Course in Homological Algebra, Graduate Texts in Mathematics, Vol. 4, Springer-Verlag, Berlin, 1971.
- [8] A. Najim and M. E. Charkani, Finitely generated modules over group rings of a direct product of two cyclic groups, Algebra, Vol. 2014, Article ID 256020, 5 pages, 2014. doi:10.1155/2014/256020.
- [9] K. Roggenkamp and V. Huber-Dyson, Lattices Over Orders I, Lecture Notes in Mathematics, Vol. 115, Springer-Verlag, Berlin, 1970.