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Abstract

For a commutative and unitary ring R, we characterize the classes of a classical

equivalence relation defined on extensions of an R[X]-module, which is
R-projective by another R[X]-module. The modules that are extensions of an
R[X]-module My, which is R-projective by an R[X]-module M; have a fairly
simple form which we denote by My xf My, where fis an R-homomorphism
from Mg to M;. For R, M;, My and f as in the foregoing, but My is not

necessarily R-projective, we search to classify the R[X]-modules M; xf Ms.
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1. Introduction

All rings considered in this paper are supposed to be with unit. Let R
be a commutative ring. Let N and L be two R-modules. We recall (see
[1, 7, 9]) that an extension of L by N is a triple (u, M, v), where M is an

R-module and u, v are R-module homomorphisms such that the sequence

O>NLMSL >0

is exact. Two extensions (u, M, v) and (v, M',v') of L by N are
equivalent if there exists an isomorphism of R-modules ¢ : M —» M’

such that the following diagram is commutative:

0 —— N —— 3 M Y 3 s 0
I,IN J{‘P llL
0— s N Y, ¥, [ 3 0

For this equivalence relation, the class of an extension (v, M, v) of L by
N is denoted by (u, M, v).

On the group rings, one of the technics used to study the module
extensions consists to show that a module, which is extension of a module
L by another module N - under some conditions - can be written in a

simple form that is denoted by N x, L, where o is a cocycle or a

derivation (see, for example, [2], [3], [8]). For the polynomial rings, this
form is much simpler, indeed instead of cocycles or derivations we can

take homomorphisms of R-modules.

The polynomial ring with coefficients in R will be denoted by R[X].

In this paper, we study the extensions of R[X]-modules. We search

essentially to characterize these extensions. In Section 2, we characterize
the classes of this equivalence relation defined on extensions of an
R[X]modules My, which is R-projective by an R[X]module M;. As we
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already said, the modules that are extensions of an R[X]-module M,
which is R-projective by an R[X]-modules M; have a fairly simple form
which we denote by M; x; My, where f is an R-homomorphism from
My to M;. In Section 3, for M7, My and f as in the foregoing, but M,
is not necessarily R-projective, we search to classify the R[X]-modules

M; x; M. In the same time, we give some properties of these modules.

2. Extension Equivalence of Modules

Over Polynomial Rings

Let R be a commutative ring. Let M; and My be two R[X]-modules.
Let f e Homp(My, M;), where Hompg(Mqy, M;) is the set of all
R-module morphisms from the R-module My to the R-module M;. Then,
we can define a structure of R[X]module on M; x My by V(m;, my)
M, x My, X.(my, mg) = (X.mq + f(mg), X.mg). The module M; x M,
equipped with this structure of R[X]module will be denoted by

M, x; My. In this case, the following sequence O — M, a M, xp My

p . . ,
3 M, — O, is an exact sequence of R[X]-modules, where i; is the first

injection and pq is the second projection.

Theorem 2.1. Let O — M; % M % My — O be an exact sequence of

R[X]-modules. If My is R-projective, then there exists f € Homp(Msq, M;)

such that (u, M, v) = (iy, My x; My, pg).

Proof. O -» M; % M % My — O is exact and M, is projective as
R-module. Then, there exist v' € Homp(My, M) and v’ € Homg(M, M)

such that w'ou =idy, and vov' =idy,. It is well-known that

0: M - M; ® M, defined by m > (u'(m), v(m)) is an isomorphism of
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R-modules, and 67! : My ® My — M is defined by (mq, mg) > m + u(x),
where m is such that v(m) = mg and x € M; is such that x = m; — u/(m).

We define a structure of R[X]-module on M; ® My by

V(my, mg) € My ® My, X(mq, mg) = 6(X.071((mq, ms))).
Then,
X(my, mg) = 6(X.07 ((my, my)))

= 0(X.(m + u(x)))

= 0(X.m + X.u(x))

= (W (X.m + Xu(x)), v(X.m + Xu(x)))

= W(X.m)+ Xx, X.my)

= (Xomy + w(X.m) - Xa'(m), Xms).

We have v(m) = mg, so there exists m' e ker(v) such that v'(mg) =
m+m'. As ker(v) = Im(u), then there exists m4 € M; such that

v(my) = m + u(my). So,
w(Xom) - Xau'(m) = w'(X.(v'(mg) - u(my))) — Xa'(v'(mg) - u(my )
= (X (my)) - ' (Xau(my)) — X(w'ov'(mg)) + X.(t/ou(m}))
= W(X(my)) - X('ov'(ms)).
Therefore,
X.(my, my) = (X.my + w/(X0'(my)) - X(wov'(ms)), X.ms)
= (X.my + f(mg), Xamy),
where f ¢ Homg(Msy, M;) is defined by
Vmg € My,  f(mg) = w(X'(my)) - X.(u'ov'(ms)).

0: M — M; x; My is an isomorphism of R[X]modules and we have

Bou = i; and pyod = v. O
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Theorem 2.2. Let f, g € Homp(My, M, ), where M, and My are

two R[X]-modules. Then, the following conditions are equivalent:

(1) (&1, My xg My, pg) = (i, My xg Mg, py).
(2) There exists h € Homp(My, My ) such that, for all mg € M,

f(mg) + K(X.mg) = X.h(mgy) + g(myg).

Proof. (].) = (2) If (i]_, M1 Xf Mz, p2) = (i]_, M1 Xg Mz, p2), then
there exists a homomorphism of R[X]modules ¢ : My x; My — My x5 My
such that oi; = i; and pgop = pg. Let (m;, mg) € My x My. We have

¢((my, 0)) = @oiy (my)
=i (my)
= (ml’ O)

We put o((0, mg)) = (m{, my). As pgop = py, then mjy = my. We
define an application h: My — M; by h(mg)= mj. Then, we have
o((my, mg)) = (m; + h(mg), mg). We first show that A is a homomorphism
of R-modules. Let mgy, my € My and let r € R. o((0, mg + m3))

= (h(mg + my), mg + mj). But,
¢((0, mg + m3)) = ¢((0, my)) + ¢((0, m3))
= (h(mg), my) + (h(m3), m3)
= (h(mg) + h(m}), my + m3).

So, h(mg + mb) = h(mg) + h(my). We have also ¢((0, r.mg)) = (h(r.mg), r.msg ).
But,

¢((0, r.mg)) = o(r(0, my))
= r9((0, my))
= r(h(m2), mZ)

= (r.h(my), r.my).
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So, h(r.mg) = r.h(mg). Therefore, h € Homgp(Mqy, M;). Let my € M,.
o(X.(0, my)) = X.0((0, my)). But,

(X0, mg)) = o(f(mz), X.my))
= (f(mg) + M(X.mgy), X.my),
and
X.0((0, my)) = X.(h(mz), my)
= (X h(mz). g(mgy), X.my).
Therefore, Ymy € My, f(mg)+ h(X.mg) = X.h(mg) + g(ms).

(2) = (1): Assume that there exists h € Hompgr(M,, M, ) such that,
Vmg € My, f(my)+ h(X.mg) = X.h(my) + g(my). We define an application
¢ : My xp My - My xg My by Y(my, mg) e My xg My, ¢((mq, my)) =
(my + h(my), mg). We easily see that ¢ is a homomorphism of R-modules.

Let (my, mg) € My xp My.
@(X(my, my)) = o((X.my + f(my), X.my))
= (X.mq + f(mg) + K(X.mg), X.mg)
= (X.my + X.h(mg) + g(mg), X.mg)
= (X.(my + h(mg)) + g(mg), X.mg)
= X.(m + h(mg), mg)
= X.o((mq, mg)).

Therefore, ¢ is a homomorphism of R[X]modules, and it is easy to see

that @oi; = i; and pyop = ps. O
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Remark 2.3. If we assume that the conditions of Theorem 2.2 are
satisfied, then we have seen in the proof of this theorem, that the

homomorphism ¢ such that the following diagram of R[X]modules is

commutative:
0 y My —2 s Myx; My —225 My — 0
[
0 y My —2— My x, My —22— My — 0,

is defined by V(my, my) e My xp My, ¢((my, mg)) = (my + h(mg), mg).
(Here, we kept the notation of Theorem 2.2.) ¢ is necessarily an isomorphism

of R[X]modules and ¢! is defined by V(my, my)e M xg Mg,
07 ((my, mg)) = (my - h(my), my).

Let M; and My be two R[X]modules that are R-free of finite rank.
Let B; and By be two bases of M; and M,, respectively. Let
Cy = Matg, g,(f) and C, = Matg, p,(g) be the matrices of f and g,
respectively, with respect to the bases By and B;, and let A
(respectively, B) be the matrix representing the action of X on M; with

respect to the base B; (respectively, M, with respect to the base By).

Corollary 2.4. The following conditions are equivalent:

(1) (&1, My xp My, pg) = (i, My xg My, py).

(2) There exists H € M (R) such that, AH - HB = C; - C,.

ni,ng

Proof. Just take H = Matg, g, (h). O

In the rest of this section, we give some interesting results on the
R[X]modules M; x; My, where we use the following notations:

Ker(f) = fx € My | f(x) = 0} and Im(f) = {f(x)|x < My}.
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Proposition 2.5. The following assertions are true:
(1) Each direct summand of My included in Ker(f) is a direct

summand of My xy Mj.

(2) If N; is a direct summand of M; and Im(f) < N;, then
Ny x¢ My is a direct summand of My xp M.

Proof. (1) If My = My ® M3, where Mj; and M5 are two
R[X]submodules of My such that M5 < Ker(f), then My x; My =M x;
M35 @ {0f x; Mj.

(2) If Ny is an R[X]-submodule of M; such that Im(f) < N;, and

there exists an R[X]-submodule of M; such that M;=N; ®Nj, then
MleMZZN]'_ Xf{O}@Nl ><f Mz. ]

Corollary 2.6. (1) If f is zero, then M; x; My is a decomposable

R[X]-module.

(2) If Tm(f) is a direct summand of My, then Im(f)x; My is a direct

summand of My xy Mj.
Proof. Obvious. O
3. Isomorphism Classes

Let R be a commutative ring. Let M, ,(R), M,(R), and GI,(R)

denote, respectively, the set of the n x m matrices, the set of the nxn
matrices, and the set of the n x n invertible matrices, with entries in R,

where m and n are two nonzero natural numbers.
Let M; and My be two R[X]modules that are R-free of respective
finite rank n and m. We assume that M; = R" and M, = R™ (as

R-modules). Let B; and By be the respective canonical bases of M,

and M. Let f, g e Homg(My, My), let C; = Matg, g, (f) and
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Cy = Matg, B,(g), and let A (respectively, B) be the matrix

representing the action of X on M; with respect to the base B,

(respectively, My with respect to the base By).

Remark 3.1. (1) Let B be the canonical base of M, x; My seen as

R-module. Then, the matrix representing the action of X on M; x F My

- (A G
with respect to the base B is .
0 B

(2) The modules M; x; My and M; xz My are isomorphic if and

A Cr A Cq
only if and are similar.

0 B 0 B

The study of isomorphism classes of modules M; x; My led us to

introduce an equivalence relation on the matrices that is stronger than
that of the similarity, and that is the object of the following definition.

Definition 3.2. Let A, A’ € M,,(R), B, B’ M,,(R), and C, C' € M,, ,,(R),

where n and m are two nonzero natural numbers. The matrices

A C A’ C
and are called strongly similar if there exists
0 B 0 B’

(U, V) € GI,(R)x Gl,(R) and T € M,, ,,(R) such that

D S N M

For two matrices M and M', we put MsSM' (respectively, M?M’)

to mean that M and M' are similar (respectively, strongly similar).
Remark 3.3. For U,V € M, (R)x M,,(R) and T € M,, ,,(R), it is
U T

easy to see that
0 \%

J is invertible if and only if U and V are

invertible.
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Definition 3.4. Let f, g € Homp(Mgy, My). My xg My and My x, My

are called globally isomorphic, if there exists an isomorphism of
R[X]-modules ¢: My xy My — My x, My, suchthat ¢(M; x{0}) = M; x {0}.
We have the following interesting result:
Proposition 3.5. The modules M; x; Mg and My xg My are globally

A C A Cq
isomorphic if and only if and are strongly
0 B 0 B

similar.
Proof. We denote by )fo (respectively, X ¢) the endomorphism
which represents the action of X on M;xy My (respectively,

M x g My). The matrix of X f (respectively, X g) in the canonical base

A Cr
of M x; My (vespectively, M; x, My) is

A G
o o)
o B

Assume that M; x; My and M; x, My are globally isomorphic by

(respectively,
0 B

an isomorphism ¢. In the canonical bases of My x; My and M; x, My,

U T

¢ admits a matrix of the form [ ], where (U, V) e Gl,(R) x

0 \%
Gl,(R) and T € M), ;,(R). As for all m € My x; My, o(X.m) = X.o(m),

~ N U T\(A Cr A Cq\(U T
then @oX; = X g00. So, . oo i = . 2 1l V.

A Cr A Cy
Therefore, and are strongly similar.

0 B 0 B



EXTENSIONS OF MODULES OVER POLYNOMIAL RINGS 37

0 B 0 B
similar. So, there exist U, V e Gi,(R) x GI,,(R) and T € M, ,,(R), such

U TYA C\ (A Co\(U T
that = . Let [ Ml Xf MZ
0 V)\0 B 0 B J\0 \%

— M; xg My be the morphism of R-modules, which is represented by
U T

A C A Cq
Reciprocally, assume that and are strongly

the matrix ( J Then, we have (po)N(f = X'goq). So, for all m € My

0 |4
xf My, o(X.m) = X.¢(m). As ¢ is obviously bijective and o(M; x {0}) c
M, x {0}, then M; x; My and M; x4 My are globally isomorphic. O

It is clear that if My x; My and M; x, My are globally isomorphic,

then they are isomorphic. In the following, we show the equivalence in
special cases.

Proposition 3.6. The following conditions are equivalent:

(1) The modules My x; My and My © My are globally isomorphic.
(2) The modules My x; My and My © My are isomorphic.

(8) There exists T € M, ,,(R) such that AT -TB = Cy.

(4 (i, My xp My, py) = (i1, My ® My, py).

Proof. (3) & (4): Comes from Corollary 2.4. Then, it suffices to show
that (1) & (2) < (3).

(1) = (2): Evident.

(2) = (3): Let 9: My xf Mg - M; ® My be an isomorphism of

A ¢
R[X]modules. Then, we have ¢oX = Xoo. This implies that { ]
0 B

A 0
and ( J are similar. By [5] or [6], the equation AX — XB = Cy
0 B

has a solution in M, ,,(R).
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(3) = (1): By Corollary 2.4 and Remark 2.3,
(p:M1XfM2—)M1®M2
(my, mg) > (my +Tmg, my)
is an isomorphism of R[X]modules leaving M; globally invariant. O

Remark 3.7. If we assume that the conditions of Proposition 3.6 are

satisfied, then
(p:M1XfM2—)M1®M2
(my, mg) = (my +Tmg, mgy)

is an isomorphism of R[X]modules leaving M; globally invariant. Its

reciprocal isomorphism is defined by
(\[)_1 :Ml('BMZ —)Ml ><f M2
(my, mg) > (my = Tmg, my).
Proposition 3.8. If one of the following conditions is true:

(1) The equation BX — XA = 0 admits 0 as a unique solution.

(i1) There existe o. € R such that A = al,, and Cg is invertible.
(iii) There existe B € R such that B = BI,, and Cy is invertible,

then the following assertions are equivalent:

(1) My xy My and My x5 My are isomorphic.

(2) My xf My and My x4 My are globally isomorphic.
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Proof. (1) = (2): Assume that M; x; My and M; x, My are

isomorphic by an isomorphism ¢. Then, by (2) of Remark 3.1, there exist
(U,V)e M,(R)x M,(R), T € M, ,,(R), and R € M,, ,(R) such that

U R
is invertible, and

T |4
{U RJ [A ij [A ng [U RJ
T V)\0 B 0 B )\T \%4
TA = BT;

[U R] [A CfJ (A Cg] [U R] UA = AU + C,T;
= <~
r vjlo B) o BJT V) |TC+VB=BV;

UC; + RB = AR + C,V.

But,

If one of the conditions (i), (i1) or (iii) is true, then T = 0. Therefore,

A Cr)_(A Cyq
s . At last, by Proposition 3.5, My x; My and
0 B 0 B

M, x4 My are globally isomorphic.
(2) = (1): Obvious. O
Remark 3.9. (1) If m =n and there exists o € R such that
A =ol, and B -al, is invertible or there exists f € R such that
B =BI, and A - B1,, is invertible, then the condition (i) in Proposition 3.8
is satisfied.

(2) In a field the equation BX — XA =0 admits 0 as a unique

solution means that A and B have no eigenvalue in common.
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Lemma 3.10. Let (my, my) € My x; My and n be a nonzero natural
number. Then,

n-1
X" (my, mg) = (X"my + Y X" HFA(X my), X"y,
k=0

Proof. We use an induction on n. Let (my, my) e My x; My. For

n =1, we have

X.(my, mg) = (X.my + f(mg), X.my)

1-1
= (X my + ZXl_l_kf(Xk.mQ), X my).
k=0
Assume that
n-1
Xn.(ml, mz) = (Xnml + ZXn_l_kf(Xk.mz), Xn.m2 )
k=0
Then,
n-1
X" (my, my) = X(X"my + ) X" (X my), Xmy)
k=0
n-1
= (X" my + ZX"‘kf(Xk.m2)+ (X" my), X" imy)
k=0

n
= (X" my + ZXH f(X*my), X" my).
k=0

O

Proposition 3.11. Let ¢ : My xy My — My x; My be a homomorphism

of R[X]modules. If g is an injective homomorphism of R[X]-modules,
and there exists a nonzero natural number [ such that [ is invertible

in R and both M; and My are annihilated by X' -1, then
o(My x {0}) = My x {0}.
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In particular, if furthermore ¢ is an isomorphism, then My x; My

and My xg My are globally isomorphic by the isomorphism ¢.

Proof. Let (my, 0) e M; x {0}. We put ¢(my, 0) = (m], mj). Then,
we have
o(my, 0) = (X' my, 0)
I-1
= (X'mj + ZXZfl*kg(Xk’.m'g), X'm}) (By Lemma 3.10)
k=0

= (mi, mj).

So,
-1
D xrg(xb.my) = 0.
k=0

= 3 g(X"1.my) = 0. (Since g is a homomorphism of R[X]-modules)
k=0
= Ig(X" ' .mj) = 0.
= g(x'? .mb) = 0. (Since [ is invertible in R)
= Xl_l.m'Q = 0. (Since g is injective)
= X.X"'my = X mh = mh = 0.
So, ¢(m;, 0) = (my, 0). Therefore, o(M; x {0}) c M; x {0}. O

Corollary 3.12. Let A € M,(R), B € M,,(R) and C, C' € M,, ,,(R),

where n and m are two nonzero natural numbers. Let (U, V) e M, (R)x

U R
M, (R), Re M, ,(R) and T e M,, ,(R) such that { ]
T \%4
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A C A cC (U R
= . If C' is invertible, AC = C'B and

0 B 0 B)\T \%
there exists a nonzero natural number | such that | is invertible in R,

Al =1, and B = I, then T = 0.

A o) (4 C Ao
In particular, if s , then 3
0 B 0 B 0 B
A ¢
0 B
Proof. Just take M; = R", My = R™, B; and B, the respective
canonical bases of M; and My, C =C; = Matg, g,(f), C' = Cy =

Matg, g, (g) and A (respectively, B) the matrix representing the action

of Xon M; with respect to the base B; (respectively, My with respect to
the base Bsy). O

Lemma 3.13. If (U,V)e M, (R)x M,(R),R € M, ,,(R),T € M,, ,(R)

U R\(A Cr A Cq\(U R A UCy
and = , then
T VJ\0 B 0 B )\T \% 0 B

S S R

= UCf + RB = AR + CgV.
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Then, we have

I, R\(A UC\(I, -R) (A C,V
0 1) 0 B J\o I,) o B

>
wn
7\
S~
S
SN:U

|
I
o N
S
~N |
oy
-
=
D
B
7~ N\
SEEN
SRS
XY
N—
»
7\
SEEN
UJUQQ
<
N—

Proposition 3.14. Assume that My xy My and M; xg My are
isomorphic by an isomorphism ©. Let ' = pjoootjof and g' = gops0¢0is.
Then, My xp My and My xg My are globally isomorphic.

Proof. Comes from Lemma 3.13. O

Remark 3.15. In general, M; x; M, and M; x, My are globally

isomorphic does mnot necessarily imply that (ij, My x; My, py) =

(iy, My x4 Mg, py). In particular, M; x; My and M; x, My are

isomorphic does not necessarily imply that (i, My x; Mg, pg) =

2 3

(i, M, xg My, po ). Indeed, let R = R and let [ J (respectively,

0 2

2 1
[ J) be the matrix representing the action of X on M; xy My
0 2

(respectively, M; Xg Msy) with respect to its canonical base (as

2 3) (2 1
R-module). We have s . So, by Proposition 3.5,
0 2 0 2

My x; My and My xg My are globally isomorphic. But, the equation
2xX-Xx2=3-1 has not any solution. By Corollary 2.4,
(i, My xf Mg, py) # (i, My xg Mg, py).
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a c) (a c
Lemma 3.16. If , € My(R) and R is an integral
0 b) \0 b

domain, then

a c a c' u r
Proof. If 5 , then there exists eGly(R)

such that

ta = bt;

u r\(a c a A\ (u r ua = au + c't;
= &
t v)\0 b 0 b))\t v tc + vb = bu;

uc +rb = ar + c'v.

=t=0o0orc=c =0.

a c) _(a c'
Itisclearthatif ¢t =0 or ¢ = ¢’ = 0, then s . O
0 b

If R is an integral domain and n = m = 1, then we have the following

proposition:
Proposition 3.17. The following conditions are equivalent:

(1) My xf My and My x5 My are isomorphic.

(2) My xf My and My x5 My are globally isomorphic.
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Proof. Clear by (2) of Remark 3.1, Lemma 3.16 and Proposition 3.5.
O
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