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Abstract 

The paper considers the functional form of Jensen’s inequality and its applications. 
The paper offers the extension of this functional form and its usage in creating 
the most important inequalities for convex functions. In particular, the Jensen 
and Hermite-Hadamard inequality are applied to preinvex functions. 

1. Introduction 

The concept of convexity plays a significant role in many fields of 
pure and applied mathematics. Its generalization, the concept of invexity 
is applied to problems of variational inequalities, equilibrium, nonlinear 
programming, and optimization. 

The aim of this paper is to establish the basic functional inequality 
which can be widely applied to convex and preinvex functions. With this 
intention, we will discuss the Jensen (see [4]) and Hermite-Hadamard 
(see [2] and [1]) inequality. 
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The basic structure that we use in this research is the real vector 
space marked with .X  As the domain of observed convex and preinvex 
functions, we will use bounded closed intervals in R  and line segments in 

.kR  

1.1. Convex set and convex function. 

We recall the basic notions of the concept of convexity. 

Definition 1. A set X⊆C  is said to be convex if the inclusion 

( ) ( ) ,1 Cxytxtyxt ∈−+=+−   (1) 

holds for all points Cyx ∈,  and coefficients [ ].1,0∈t  

Definition 2. Let X⊆C  be a convex set. A function R→Cf :  is 
said to be convex if the inequality 

( )( ) ( ) ( ) ( ),11 ytfxfttyxtf +−≤+−   (2) 

holds for all points Cyx ∈,  and coefficients [ ].1,0∈t  

The expression ( ) tyxt +−1  in formula (1) is called the binomial 

convex combination of points x and y with coefficients t−1  and t. The 
convex hull of a set X⊆S  is the smallest convex set in X  containing S, 
and it consists of all binomial convex combinations of points of S. The 
convex hull of S is denoted with convS. 

1.2. Invex set and preinvex function.  

A notion of preinvex function was introduced in [14] and [13], and 
came from the notion of invex function. Some prominent properties of 
preinvex functions can be found in [15]. We briefly present the concept of 
preinvexity, referring to a preinvex function on the invex set. 

Definition 3. A set X⊆K  is said to be invex respecting a vector 
function X→× KKv :  if the inclusion 

( ) ( )( ) ( ) ,,,1 Kxytvxxyvxtxt ∈+=++−   (3) 

holds for all points Kyx ∈,  and coefficients [ ].1,0∈t  
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The invex set K contains the line segment between points x and 
( )xyvx ,+  for every pair of points x and y of K, because 

( ) ( ) ( )( ).,1, xyvxtxtxytvx ++−=+   (4) 

Any subset kR⊆K  is invex respecting the vector function v identically 
equal to null vector. 

Every convex set K is invex respecting the mapping ( ) ., xyxyv −=  
The following example demonstrates that the reverse statement is not 
true. 

Example 1.1. The set ( ] [ ) ,,, R⊂∞+−−∞= aaK ∪  where ,0≥a  is 

invex respecting the mapping ( ) xxyv =,  because it contains the 
combinations 

( ) ( ) ,1, xtxytvx +=+   (5) 

for all points Kyx ∈,  and coefficients [ ].1,0∈t  

Definition 4. Let X⊆K  be an invex set respecting a vector 
function .: X→× KKv  A function R→Kf :  is said to be preinvex 
respecting v if the inequality 

( )( ) ( ) ( ) ( ),1, ytfxftxytvxf +−≤+   (6) 

holds for all points Kyx ∈,  and coefficients [ ].1,0∈t  

Every convex function f on the convex set K is preinvex respecting the 
mapping ( ) ., xyxyv −=  As the following example (see [14]) shows, the 
converse is not true. 

Example 1.2. The function ( ) xxf −=  observed on the set R=K  is 
preinvex respecting the mapping 

( )






<−

≥−
=

.0,

,0,
,

xyyx

xyxy
xyv   (7) 

In the case ,0≥xy  we obtain formula (6) with the sign of equality. In the 
case ,0<xy  we obtain formula (6). 
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2. Main Results 

We aspire to determine the appropriate and applicable inequality 
with positive linear functionals. In that pursuit, we rely on the Jessen 
functional form of Jensen’s inequality. 

Let X be a nonempty set and X  be a subspace of the linear space of 
all real functions on the domain X. We assume that the space X  contains 
the unit function u defined by ( ) 1=xu  for every .Xx ∈  Such space 

contains every real constant c because .cuc =  Consequently, the 
composite function ( ) X∈gf  for every affine function ( ) 21 cxcxf +=  and 

every function .X∈g  

The space of all linear functionals on the space X  will be denoted 
with ( ).XL  The functional L is positive (nonnegative) if ( ) 0≥gL  for 

every nonnegative function .X∈g  The functional L is unital 
(normalized) if ( ) .1=uL  Such functional has the property ( ) ccL =  

because ( ) ( ) ( ) .cucLcuLcL ===  

We start with unital functionals. 

Lemma 2.1. Let RR →:f  be an affine function, X∈g  be a 
function, and ( )XL∈L  be a unital functional. 

Then 

( )( ) ( )( ).gfLgLf =   (8) 

Proof. Using the affine equation ( ) ,21 cxcxf +=  and the unital 

property of L, we obtain 

( )( ) ( ) ( ) ( )( )gfLucgcLcgLcgLf =+=+= 2121   (9) 

proving the equality in (8).   

Now we use a function ,X∈g  whose image is contained in the 
bounded closed interval of real numbers. In this case and throughout the 
paper, [ ] R⊂ba,  will be the closed interval with endpoints .ba <  
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Lemma 2.2. Let X∈g  be a function such that its image is in [ ]ba,  

and ( )XL∈L  be a unital positive functional. 

Then 

( ) [ ]., bagL ∈   (10) 

Proof. Applying the positive and unital functional L to the function 
image assumption ( ) ,bxga ≤≤  we get ( ) bgLa ≤≤  proving the 

inclusion in (10).   

 

Figure 1. Support and secant line of a convex function. 

Let ( )bac ,∈  be a point. A convex function [ ] R→baf ,:  satisfies 

the support-secant inequality 

{ } ( ) ( ) { }( ),sec
,

sup xfxfxf bac ≤≤   (11) 
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for every [ ]., bax ∈  The support lines pass through the graph point 

( )( )., cfcC  Each support line is specified by the slope coefficient 

( ) ( )[ ]+′−′∈ cfcf ,κ  and the corresponding equation: 

{ } ( ) ( ) ( ).sup cfcxxf c +−= κ   (12) 

The secant line passes through the graph points ( )( )afaA ,  and 

( )( ),, bfbB  and its equation is 

{ }( ) ( ) ( ).sec
, bfab

axafab
xbxf ba −

−+
−
−=  (13) 

A visual perception of the support-secant inequality can be seen in Figure 
1. 

Theorem 2.3. Let [ ] R→baf ,:  be a continuous convex function, 

and X∈g  be a function such that its image is in [ ]ba,  and that the 

composite function ( )gf  is in .X  Let ( )XL∈L  be a unital positive 

functional. 

Then 

( )( ) ( )( ) { } ( )( ).sec
, gLfgfLgLf ba≤≤   (14) 

Proof. Let ( ).gLc =  Then [ ]bac ,∈  by Lemma 2.2. We sketch the 

proof in two steps depending on the location of c. 

If ( ),, bac ∈  we use any support line of f at c, and the secant line of f. 

Since ( ) [ ]baxg ,∈  for every ,Xx ∈  we have that 

{ } ( )( ) ( )( ) { } ( )( )xgfxgfxgf bac
sec

,
sup ≤≤   (15) 

by formula (11). Acting with the functional L to the above double 

inequality, and applying formula (8) to affine functions { }
sup
cf  and { },

sec
,baf  

we obtain the double inequality in formula (14). We also use the equality 
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{ } ( )( ) ( )( ).sup gLfgLf c =   (16) 

If { },, bac ∈  we rely on the continuity of f using the support line at a 

point that is close enough to c.   

In 1931, Jessen (see [5] and [6]) stated the left-hand side of the 
inequality in formula (2.3) for a convex function f on the interval .R⊆I  

In 1988, Raşa (see [12]) pointed out that I must be closed, otherwise it 
could happen that ( ) ,IgL ∈/  and that f must be continuous, otherwise it 

could happen that the left-hand side of the inequality in formula (14) 
does not apply. Some generalizations of the functional form of Jensen’s 
inequality can be found in [11]. 

3. Application to the Jensen and  
Hermite-Hadamard Inequality 

To take advantage of Theorem 2.3, we will use X  as the linear space 
of applicable real functions on the domain [ ]., baX =  

Each point [ ]bax ,∈  can be presented by the unique binomial convex 

combination 

,bax β+α=   (17) 

where 

., ab
ax

ab
xb

−
−=β

−
−=α  (18) 

As the first consequence of Theorem 2.3, we affirm the following 
symmetric form of the extended Jensen’s inequality. 

Corollary 3.1. Let [ ] [ ]babag ,,: →  be a function, ii
n
i xλ∑ =1  be a 

convex combination of points [ ],, baxi ∈  and ba β+α  be the convex 

combination that is equal to ( ).1 ii
n
i xgλ∑ =
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Then every convex function [ ] R→baf ,:  satisfies the double 

inequality 

( ) ( )( ) ( ) ( ).
1

bfafxgfbaf ii

n

i
β+α≤λ≤β+α ∑

=

  (19) 

Proof. Let X  be the space of all real functions on the domain 
[ ]., baX =  Then the summarizing linear functional 

( ) ( ),
1

ii

n

i
xhhL λ= ∑

=

 (20) 

where ,X∈h  is positive and unital. Using the given functions g and f,   

we obtain 

( ) ( ) ,
1

baxggL ii

n

i
β+α=λ= ∑

=

 (21) 

( )( ) ( )( ),
1

ii

n

i
xgfgfL λ= ∑

=

 (22) 

and 

{ } ( )( ) ( ) ( ) ( ) ( ) ( ) ( ).sec
, bfafbfab

agLafab
gLbgLf ba β+α=

−
−+

−
−=  (23) 

Assuming that f is continuous, and arranging the above items into 
the functional inequality in formula (14), we achieve the discrete 
inequality in formula (19). The same is true for the convex function f, 
which is not continuous at endpoints because the one-sided limits satisfy 
( ) ( )afaf ≤+  and ( ) ( ).bfbf ≤−    

Taking the identity function ( ) ,xxg =  it follows that =β+α ba  

,1 ii
n
i xλ∑ =

 and the left-hand side of the inequality in formula (19) 

represents the classical form of the Jensen inequality. 
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As the second consequence of Theorem 2.3, we state the following 
generalization of the Hermite-Hadamard inequality. 

Corollary 3.2. Let [ ] [ ]babag ,,: →  be an integrable function and 

ba β+α  be the convex combination that is equal to ( ) ( ) .1 dxxgab
b
a∫

−−  

Then every convex function [ ] R→baf ,:  satisfies the double 

inequality 

( ) ( )( ) ( ) ( ).1 bfafdxxgfabbaf
b

a
β+α≤

−
≤β+α ∫  (24) 

Proof. Let X  be the space of all integrable functions over the domain 
[ ]., baX =  The composition ( )gf  is integrable over [ ]ba,  because it is 

bounded, and continuous almost everywhere in [ ]., ba  The integrating 

linear functional 

( ) ( ) ,1 dxxhabhL
b

a∫−
=  (25) 

where ,X∈h  is positive and unital. Applying the functional L to the 
given functions g and f, we get 

( ) ( ) ,1 badxxgabgL
b

a
β+α=

−
= ∫  (26) 

( )( ) ( )( ) ,1 dxxgfabgfL
b

a∫−
=  (27) 

and 

{ } ( )( ) ( ) ( ),sec
, bfafgLf ba β+α=  (28) 

as in formula (23). 

The functional inequality in formula (14) with the above findings 
stands as the integral inequality in formula (24) for any convex function 
f.   
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Taking ( ) ,xxg =  it follows that ,21=β=α  and the inequality in 

formula (24) represents the classical form of the Hermite-Hadamard 
inequality. 

Extensions and generalizations of the above famous inequalities can 
be found in [9] and [10]. An interesting historical story about the 
Hermite-Hadamard inequality can be read in [8]. 

4. Application to Preinvex Functions 

We want to apply the Jensen and Hermite-Hadamard inequality to 

preinvex functions on the invex set .kR⊆K  For this purpose, we will 

formulate the extended Jensen’s inequality (Lemma 4.1) and the 
Hermite-Hadamard inequality (Lemma 4.2) for convex functions on the 

line segment in space .kR  

Let ba ≠  be a pair of points in .kR  The line segment between points 
a and b will be written as the convex hull 

{ } [ ]{ }.1,1,0,:,conv =β+α∈βαβ+α= baba   (29) 

Each point { }bax ,conv∈  can be presented by the unique binomial 

convex combination 

,bax β+α=   (30) 

where (using the norm ) 

., ab
ax

ab
xb

−
−

=β
−
−

=α  (31) 

Lemma 4.1. Let ii
n
i xλ∑ =1  be a convex combination of points  

{ },,conv baxi ∈  and ba β+α  be the convex combination that is equal to 

.1 ii
n
i xλ∑ =
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Then every convex function { } R→baf ,conv:  satisfies the double 

inequality 

( ) ( ) ( ) ( ).
1

bfafxfbaf ii

n

i
β+α≤λ≤β+α ∑

=

 (32) 

Lemma 4.2. Every convex function { } R→baf ,conv:  satisfies the 

double inequality 

( ) ( ) ( ) .2
1

2
bfafdxxfab

baf
b

a

+≤
−

≤




 + ∫  (33) 

Using the segment equation ( )abtax −+=  through the real 

parameter [ ],1,0∈t  the middle term of formula (33) can be expressed by 

( )( ) .
1

0
dtabtaf −+∫  (34) 

A little more about invex sets which will now be considered in space 

.kR  If a set kR⊆K  is invex respecting v, and if ,, Kba ∈  then the 

generated line segment ( ){ }abvaa ,,conv +  is not necessarily invex 

respecting v. The requirement that the generated segments of the invex 
set be invex provides the condition introduced in [7]. It is known as 
condition C, and its consequence is Lemma 4.3 which among other things 
allows the application of the important inequalities to preinvex functions. 

Definition 5. Let kR⊆K  be an invex set respecting a vector 

function .: kR→× KKv  It is said that the function v satisfies condition 
C if the equalities 

( )( ) ( ),,,, xytvxytvxxv −=+   (35) 

( )( ) ( ) ( ),,1,, xyvtxytvxyv −=+   (36) 

hold for all points Kyx ∈,  and coefficients [ ].1,0∈t  
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A consequence of condition C is the equality 

( ) ( )( ) ( ) ( ),,,,, 1212 xyvttxyvtxxyvtxv −=++   (37) 

which holds for all points Kyx ∈,  and coefficients [ ].1,0, 21 ∈tt  

Assuming the presence of condition C, the following lemma shows 
where the preinvexity coincides with convexity. 

Lemma 4.3. Let kR⊆K  be an invex set respecting a vector function 
v that satisfies condition C and R→Kf :  be a preinvex function 
respecting v. 

Then the function f is convex on the generated segment { +aa,conv  

( )}abv ,  for every pair of points ., Kba ∈  

Proof. Let Kba ∈,  be a pair of set points, { vaayx +∈ ,conv,  

( )}ab,  be a pair of segment points, and [ ]1,0∈t  be a coefficient. We will 

verify the equality of combinations ( ) tyxt +−1  and ( )., xytvx +  Using 

the representations 

( ) ( )abvtayabvtax ,,, 21 +=+=  

via formula (37), we get 

( ) ( ) ( )( ) ( )( )abvtatabvtattyxt ,,11 21 +++−=+−  

( ) ( ) ( )abvtttabvta ,, 121 −++=  

( ) ( ) ( )( )abvtaabvtatvabvta ,,,, 121 ++++=  

( )., xytvx +=  (38) 

Taking into account the above equality, and applying the preinvexity 
of f to the invex combination ( ),, xytvx +  we obtain the inequality 

( )( ) ( )( ) ( ) ( ) ( ),1,1 ytfxftxytvxftyxtf +−≤+=+−   (39) 

which proves the convexity of f on the segment ( ){ }.,,conv abvaa +    
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Formula (38) specifies the vector function v, it follows that ( ) =xyv ,  

xy −  for all points x and y of the generated segment ( ){ }.,,conv abvaa +  

The type of convexity given in Lemma 4.3 enables us to apply the 
convex function inequalities to preinvex functions. First and foremost, it 
refers to fundamental inequalities for convex functions on the line 
segment, which are prepared in Lemmas 4.1 and 4.2. 

Extended version of the Jensen inequality for preinvex functions is 
the first that follows. 

Corollary 4.4. Let kR⊆K  be an invex set respecting a vector 
function v that satisfies condition C and R→Kf :  be a preinvex 
function respecting v. Let [ ]1,0,,1 ∈λλ n…  be coefficients such that 

,11 =λ∑ = i
n
i  let [ ]1,0,,1 ∈ntt …  be coefficients, and let .1 ii

n
i tt λ= ∑ =

 

Then the double inequality 

( )( ) ( )( ) ( ) ( ) ( )( ),,1,,
1

abvatfaftabvtafabtvaf ii

n

i
++−≤+λ≤+ ∑

=

 (40) 

holds for every pair of points ., Kba ∈  

Proof. Let a and b be a pair of points of K and ( ){ }abvaa ,,conv +  be 

the line segment with endpoints a and ( )., abva +  The points 

( )abvta i ,+  belong to ( ){ },,,conv abvaa +  as well as their convex 
combination 

( )( ) ( ) ( )abtvaabvtaabvta ii

n

i
i

n

i
ii

n

i
,,,

111
+=λ+λ=+λ ∑∑∑

===

  (41) 

( ) ( )( ).,1 abvatat ++−=  

The function f is convex on the generated segment 
( ){ }abvaa ,,conv +  by Lemma 4.3. Therefore, respecting the above 

equalities, we can employ formula (32) by using a as ( )abvaa ,, +  as 

( )abvtab i ,, +  as ,ix  and t as ,β  we obtain formula (40).   
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Since 

( ) ( ) ( )( ) ( ) ( ) ( ),1,1 btfaftabvatfaft +−≤++−   (42) 

the inequality in formula (40) can be extended to the right side. If 
( ) ,0, =abv  the inequality in formula (40) is reduced to ( ) ( ) ( ).afafaf ≤≤   

The left-hand side of the inequality in formula (40) representing the 
Jensen inequality for preinvex functions can be written in the form 

( )( ) ( )( ).,,
11

abvtafabvtaf ii

n

i
ii

n

i
+λ≤













+λ ∑∑

==

  (43) 

It remains to specify the Hermite-Hadamard inequality for preinvex 
functions. 

Corollary 4.5. Let kR⊆K  be an invex set respecting a vector 
function v that satisfies condition C and R→Kf :  be a preinvex 
function respecting v.  

Then the double inequality 

( )
( )

( )
( ) ( ) ( )( ) ,2

,
,
1

2
, , abvafafdxxfabv

abvaf
abva

a

++
≤≤






 + ∫

+
 (44) 

holds for every pair of points Kba ∈,  such that ( ) .0, ≠abv  

Proof. Employing formula (33) by using a as a and ( )abva ,+  as b, 

we obtain formula (44).   

The middle term of the inequality in formula (44) can be replaced 
with 

( )( ) .,
1

0
dtabtvaf +∫  (45) 

The type of the Hermite-Hadamard inequality involving the 
Riemann-Liouville integrals and gamma function were considered in [3], 
wherein some results were achieved for positive preinvex functions on 
the open invex set .R⊆K  
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5. Conclusion 

The functional inequality in formula (14) can be refined in the 
following way. First we take a point ( )., bac ∈  Then, we consider 

functionals 1L  and 2L  of the space ( )XL  such that ( ) [ ]cagL ,1 ∈  and 

( ) [ ]bcgL ,2 ∈  for each function g belonging to some class of functions in 

.X  The approach of two functionals enables us to use secant lines 

{ }( )xfy ca
sec

,=  and { }( )xfy bc
sec

,=  together with a certain convex combination 

21 LL β+α  of functionals 1L  and .2L  Thus, we achieve the refinement of 

the inequality in formula (14) and all other inequalities discussed in this 
paper. 
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