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Abstract 

We determine the number of edges of the zero-divisor graph of the direct 
product of finitely many finite non-commutative rings or semigoups. 

1. Introduction 

This paper is a follow-up to Birch et al. [8]. Throughout this paper,    
R will denote a ring. In this paper, all rings are finite with identity and 
are not necessarily commutative. 
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Let R be a ring with identity .01 ≠  Let ( )RZ∗  denote the set of non-

zero zero-divisors of R. The zero-divisor graph of R, denoted ( ),RΓ  is a 

directed graph, whose vertices are labelled by the elements of ( ).RZ∗  

There is an edge in ( )RΓ  from r to s if and only if .0=rs  In this case, we 

say that r is adjacent to s and s is adjacent from r. Using the notation of 

graph theory, we say that the set of vertices of ( )RΓ  is ( )( ) ( )RZRV ∗=Γ  

and the set of edges of ( )RΓ  is ( )( ) {( ) ( ) }.0and,, =∈=Γ ∗ rsRZsrsrRE  

In contrast to the standard definition of zero-divisor graph, if ,02 =r  
then we allow an edge from r to itself in the zero-divisor graph. Such an 
edge is called a loop. For a reference on graph theory, see [10]. 

Zero-divisor graphs were first defined for commutative rings by Beck 
[7] who studied graph colouring. Papers by Anderson and Naseer [3] and 
Anderson and Livingston [6] followed. In the last several years, there has 
been a large number of papers on this topic; see the survey papers by 
Anderson et al. [5] and Coykendall et al. [11]. Each survey contains an 
extensive bibliography. The latter survey also has material on the zero-
divisor graphs of semigroups and posets as well as generalizations of 
zero-divisor graphs. 

As examples of more recent research, Anderson and Badawi [4] 
studied the zero-divisor graph of rings, which are generalizations of 
valuation rings. De-Meyer et al. [12] studied zero-divisor graphs of 
semigroups. 

Redmond [17, 18] introduced the concept of the zero-divisor graph for 
a non-commutative ring. Bozic and Petrovic [9] studied the zero-divisor 
graph of a ring of matrices over a commutative ring. Akbari and 
Mohammadian [1] studied the problem of determining when the zero-
divisor graphs of rings are isomorphic, given that the zero-divisor graphs 
of their matrix rings are isomorphic, as did Redmond [19]. Li [16] and Li 
and Tucci [15] studied the zero-divisor graphs of upper triangular matrix 
rings. Dolzan and Oblak [13] studied zero-divisor graphs of semirings as 
well as those of rings. 
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In this paper, we determine a formula for the number of edges of the 
zero-divisor graph of a direct product of non-commutative rings or 
semigroups ,1 tRR ××"  given the zero-divisor graphs of each .iR  This 

problem was solved for finite commutative rings without nonzero 
nilpotent elements by Lagrange [14]. In Birch et al. [8], the problem was 
solved for finite commutative rings in general. The techniques and 
results in Redmond [19] are similar to those in this paper. 

Although the results in this paper and in [8] are stated for rings, they 
hold true for semigroups as well. It is well-known that in a finite ring 
every element is a unit or a zero-divisor. This is not true for semigroups; 
however, the only fact we need is that every element in a ring or a 
semigroup is either a zero-divisor or not. 

For any set X, let X  denote the cardinality of X. Let U denote the 

set of units of R. Then .1 ∗+=− ZUR  We will use this fact without 

explicit mention when needed. 

2. The Zero-Divisor Graph of a Direct Product of Rings 

In this section, we determine a formula for the number of edges in 
the zero-divisor graph of a direct product tRR ××"1  of non-

commutative rings, given complete information about each ( )iRΓ  and 

each .iR  We develop a recursive formula for an arbitrary direct product 

and then we derive a non-recursive version of this formula. Finally, we 
give a MatLab implementation of this latter formula. 

Let .21 RRR ×=  Let E be the set of edges of ( ).RΓ  For ,2,1=i  let 
∗
iZ  be the set of nonzero zero-divisors of ,iR  let iE  denote the set of 

edges in ( ),iRΓ  and let iU  be the set of non-zero-divisors of .iR  

In order to count the number of edges in ( ),1 tRR ××Γ "  we first 

count the number of edges in ( ),21 RR ×Γ  and then we extend this result 

to ( )tRR ××Γ "1  by induction. Since any ring consists of non-zero-
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divisors and zero-divisors, the set of nonzero elements of ( )21 RR ×  is 

( ),, 21 AA∪  where ∗= ii ZA  or ii UA =  or { }0=iA  for 2,1=i  and 

either { }01 ≠A  or { }.02 ≠A  To count the number of edges in 

( ),21 RR ×Γ  we construct the graph in Figure 1.  

 

Figure 1. Sets of zero-divisors in .21 RR ×  

The numbers on the edges are labels. The vertices of this graph       
are the sets ( ) ⊆21, AA .21 RR ×  We draw an edge from ( )21, AA             

to ( ) 2121, RRAA ×⊆′′  precisely when there are elements 

( ) ( ) ( )2121 ,,0,0 AAaa ∈≠  and ( )0,0  ( ) ( )2121 ,, AAaa ′′∈′′≠  such that 

( ) ( ) ( );0,0,, 2121 =′′ aaaa  that is, each edge in Figure 1 from ( )21, AA  to 

( )21, AA ′′  represents the set of all edges in ( )21 RR ×Γ  from elements of 

( )21, AA  to ( )., 21 AA ′′  
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If 1R  is a domain, then ,01 /=∗Z  and hence the vertices ( ),, 21
∗∗ ZZ  

( ) ( )211 ,,0, UZZ ∗∗  do not appear in the graph. Likewise, if 2R  is a 

domain, then ,02 /=∗Z  and the vertices ( ) ( ) ( )∗∗∗∗
22121 ,0,,,, ZZUZZ  do 

not appear in the graph. 

Lemma 2.1. For each edge labelled by ,111, ≤≤ nn  in Figure 1, let 

Card(n) denote the number of edges in ( )21 RR ×Γ  represented by this 

edge. Then the values of Card(n) are given as follows: 

n 1 2 3 4 5 6 7 

Card(n) 2E  212 EZ∗  21 EE  122 EZ∗  1E  212 EU  122 EU  

 
n 8 9 10 11 

Card(n) ∗
212 ZU  ∗∗

212 ZZ  212 UZ∗  212 UU  

Proof. Clearly, the values for Card(1) and Card(5) are correct. 

For Card(2), let ∗∈ 11 Zz  and let ,, 222
∗∈′ Zzz  where .022 =′zz  Then, 

there are distinct edges ( ) ( )221 ,0, zzz ′→  and ( ) ( ).,,0 212 zzz ′→  

Therefore, ( ) .22 21 EZCard ∗=  A similar argument holds for Card(4). 

For Card(3), let ∗∈′ iii Zzz ,  for ,2,1=i  where .0=′iizz  These 

elements give rise to the edge ( ) ( ).,, 2121 zzzz ′′→  The number of such 

edges is .21 EE  

For Card(6), let ,,, 22211
∗∈′∈ ZzzUu  where .022 =′zz  These 

elements give rise to the edges ( ) ( )221 ,0, zzu ′→  and ( ) ( ).,,0 212 zuz ′→  

The number of such edges is .2 21 EU  A similar argument holds for 

Card(7). 
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For Card(8), let 11 Uu ∈  and .22
∗∈ Zz  These elements give rise to 

the edges ( ) ( )21 ,00, zu →  and ( ) ( ).0,,0 12 uz →  The number of such 

edges is .2 21
∗ZU  A similar argument holds for Card(9), Card(10), and 

Card(11).   

Proposition 2.2. The number of edges in ( )21 RR ×Γ  is 

( ) ( ) 12211 1212 EREERE −+−+=  

( ) ( ).112 21 −−+ RR   (1) 

Proof. From Lemma 2.1, add Card(1) + Card(2) + Card(3) + Card(6) 
to obtain 

( ) 212122121212 1222 EEEREEUEEEZE +−+=+++ ∗  

  ( ) .12 211 EER −+=  

In a similar manner, from Lemma 2.1, add Card(4) + Card(5) + Card(7) 
to obtain ( ) .12 12 ER −  Finally, add the remaining terms in Lemma 2.1 

to obtain ( ) ( ).112 21 −− RR   

We now describe the general case. Let tt RRR ××= "… 1,,1  for some 

t and let .11 +×××= tt RRRR "  Let tE ,,1 …  denote the edges of 

( )tR ,,1 …Γ  and let E denote the edges of ( ).1,,1 +Γ tR …  Suppose that we 

know ,, 1,,1 +tt EE …  and iR  for each .11 +≤≤ ti  

Proposition 2.3. The number of edges in ( )RΓ  is 

( ) ( ) ttttt EREERE ,,111,,1,,1 1212 ……… −+−+= ++   (2) 

( ) ( ).112 1,,1 −−+ +tt RR …  

Proof. In Equation (3) replace 1E  and ,1R  by tE ,,1 …  and ,,,1 tR …  

respectively, and replace 2E  and ,2R  by 1+tE  and ,1+tR  respectively.   

We now present a non-recursive version of Proposition 2.3. 
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Theorem 2.4. Let ,12 11 −+= ++ iii ERc  and let ti Rb ,,12 …=  

( ) .221 1111 +−−−+ ++++ tttt ERER  Then Equation (2) becomes 

.
1

1

1
1

1
1,,1 













++













= ∏∑∏

+=

−

==
+ j

t

ij
i

t

i
ti

t

i
t cbbEcE …   (3) 

Proof. Write Equation (2) as ,1 iiii baca +=+  where ,1,,11 ++ = ti Ea …  

,,,1 ii Ea …=  and ii cb ,  are given above. The solution to this equation is 

given in Allen [2, p.6, 1.8].   

Following is a MATLAB implementation of formula 3. 

Function ( )REZDZD ,_calc=  

% The inputs E and R are vectors containing the number of edges in the 

% zero-divisor graphs of each ( )iR  and the cardinality of each ( ),iR  

% respectively. The output ZD is the number of edges in the zero-divisor 

% graph of the direct product of the ( )iR ’s. 

for ( ) 1length:1 −= Ei  

( ) ( ) ( ) ;1112 −+++∗= iEiRic  

end 

for ( ) 1length:1 −= Ei  

( ) ( ) ( ) ( )( ) ( ) ( ) ;2112111,prod_2 ++−+∗−−+++∗∗= iEiRiEiRiRRib  

end 

( ) ( ) ( )( );length11,prod_ bbEccZD +∗=  

for ( ) 1length:1 −= bi  

( ) ( );1,prod_ +∗+= iccibZDZD  

end 
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%--------------------------------------------------------------------------------------------------- 

function ( )iccc ,prod_prod_ =  

% This function calculates the products containing the ( )ic, ’s 

% defined in Theorem 2.4. 

( );prod_ icc =  

for ( ) 1length: −= cij  

( );1prod_prod_ +∗= jccc  

end 

%--------------------------------------------------------------------------------------------------- 

function ( )iRRR ,prod_prod_ =  

% This function calculates the products of the cardinalities 

% of the ( )iR ’s as required in Equation (3). 

( );1prod_ RR =  

for 1:1 −= ij  

( );1prod_prod_ +∗= jRRR  

end. 
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