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Abstract 

This paper presents the structure of retentive production processes where 
successive observations are not independent. The concept of reliability test plan 
is enlarged for the lots form retentive processes. The operating characteristics 
(OC) function of the plan for exponential failure model have been derived and 
illustrated numerically. Tables are also presented to facilitate the operation and 
construction of the plan. 

 

 



D. K. GANGESHWER and GAURI SHANKAR 14

1. Introduction 

The development of acceptance sampling based on life tests or 
reliability tests plan has attracted the attention of several research 
workers. Some references may be made to Epstein [5, 6], Gupta and Groll [8], 
Goode and Kao [7], Gupta [9], Kantam and Rosaiah [10], Kantam et al. 
[11], Rosaiah and Kantam [18], Rosaiah et al. [19], Rao et al. [16], Rao 
[17], Singh et al. [23], Aslam and Shahbaz [1], Khan and Islam [12], and 
Sriramachandran [24]. In general, the formulation of life tests plan 
consists of deriving the fraction defective from the lifetime distribution 
model and then to apply the notion of single sampling plan by attributes 
for acceptance or rejection of the lot. 

It is well recognized by researchers and practitioners that a 
production process generally tends to lose some of its efficiency in service 
because of deterioration of machines and equipment as time elapses or 
due to erratic factors described, e.g., by Burr [3]. Therefore quality of 
products from the process decreases in time, and thereby, reflecting the 
quality of lots submitted for inspection. Duncan [4] remarked that “if a 
producer continues to submit to the consumer product from a process 
with a constant proportion defective, lot-after-lot, simple acceptance or 
rejection of lots submitted will not change the proportion defective the 
consumer will eventually receive, the consumer will receive the same 
proportion defective as was in the original process”. Therefore, it becomes 
justified and necessary to study the performance characteristics of 
acceptance sampling plans in terms of process quality level. 

Most of the acceptance sampling plans available in the literature 
assume (i) a constant probability of occurrence of a defective (or failure in 
the present context) and (ii) independence of successive observations. 
However, this is not always justified in many industrial processes. 
Barnard [2] has drawn attention to the fact that the production process 
that does not satisfy above assumptions, usually falls into one of the two 
categories (i) inert processes and (ii) retentive processes. Later on, Nath 
[14] developed control charts for fraction defective assuming that 
observations have been taken from the retentive production processes, 
and where the successive observations are not independent. In the other 
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words, we have considered the situations where successive items 
produced depend on the nature of the preceding one, which is interesting 
and new approach for the development of present paper. 

A few types of quality control models based on dependent 
observations have been studied by Singh and Singh [21, 22], and Rajarshi 
and Sampath Kumar [15]. Shankar and Gangeshwar [20] studied the 
cumulative sum control charts for retentive production processes. In this 
paper, an attempt has been made to develop the reliability (lifetime) test 
plans for lots from retentive production processes. The OC function of the 
plan have been derived for exponential failure model and illustrated 
numerically. Lastly, tables of minimum sample size, necessary for 
various acceptance number c and for various confidence level ,∗P  have 
been provided on the line of Gupta [9]. The effect of dependency on OC 
function has been studied graphically. 

2. Structure of Retentive Production Processes 

To model the situations where successive items produced depend on 
the nature of preceding one, Barnard [2] emphasized that production 
processes usually fall into one of the following two categories: 

Inert processes 1. Which stay put at a given average level until 
some shock moves them to a new level, at which they again tend to stay 
put; and 

Retentive processes 2. Which represent behaviour of a system, 
which moves under the influence of a shock, but which has a tendency to 
return to its old level. 

In order to avoid excessive references, we first reproduce the findings 
of Nath [14] in brief, and then develop a life tests plan for exponential 
failure model. The retentive processes are usually, described by the 
Morkov chain having transition probability matrix 

,
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The symbols …,, 1211 pp  etc. are explained in Appendix 1. Nath [14] 

have further shown that, the probability of process producing a defective 
item at any stage irrespective of the initial stage is given by 

.
1221

12
PP

p
+

=π  (2.2) 

Now, in the present context of life testing, we assume that the lifetime of 
the products produced at initial stage follows an exponential distribution 
with parameter .1θ  Likewise, lifetime of products produced at second 

stage of production follows the exponential distribution with parameter 
.2θ  Suppose that we have a retentive production process operating in a 

random manner described by the transition probability matrix (2.1). The 
product of this process will be said to be of quality vector [ ]., 2212 ppv =  

Further, let the lots of size N are made up of products of this process and 
submitted for inspection. More specifically, the probabilities 12p  and 22p  

are defined as follows: 

( ) ( ) ( ),/exp1/exp/1 11
0

112 θ−−=θ−θ= ∫ tdxxP
t

 (2.3) 

and  

( ) ( ) ( )22
0

222 /exp1/exp/1 θ−−=θ−θ= ∫ tdxxP
t

 

 ( )( ),/exp1 1θ−−= gt  (2.4) 

where .1and 222112 pPg −=θ=θ  

3. The Reliability Test Plan and OC Function 

Assume that the lifetime of the products produced at both the stages 
of production follows exponential distribution. A common practice in life 
testing is to truncate the experiment at a per-assigned time t and note 
the number of failures. The decision to accept the specific mean life 
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occurs, if and only if, the observed number of failures at the end of fixed 
time t does not exceed a given acceptance number c. (One can terminate 
the testing before time t is reached when the number of failures exceeds 
c, the decision in this case is to reject the lot.) The life test plan, thus, 
consists of 

(1) the number of units on test; 

(2) an acceptance number c such that lot is accepted, if c or fewer 
failures occur during the fixed time t; and 

(3) the ratio 1/1 θ  and ,/ 12 θθ=g  where 1θ  and 2θ  are the 

specified mean life defined above. 

Nath [14] have shown that under the stabilized condition of the 
process, the constituents of the state vector at any stage become 
independent of the initial stage in which the process might have been. 
Consequently, the fraction non-conforming of the lot will follow a 
binomial distribution with fraction defective whose value lie between zero 
to one. The OC function of the plan may be written as 

( ) ( ) ,1,
0

2212
ini

c
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Under the stabilized condition of production, the ratio of mean life, 
i.e., 12 / θθ=g  is fixed. The probabilities 12p  and 21p  may be written as 

( ) ( )( ),./expand/exp1 121112 θ−=θ−−= gtptp  

The main objective of a life test experiment is to set a confidence (lower) 
limit on the mean life. It is then desired to establish a specified mean life 

with a given probability of at least .∗P  Now, we are interested in 
obtaining sample size n, which satisfies the inequality 
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Moreover, when the producer’s risk is given, the minimal ratios of the 
true mean life to the specified mean life 2/ θt  can be determined with 

satisfies the following inequality: 
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Minimum ratio is 
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4. Construction of the Table 

The operating characteristic function of the proposed plan 
( )gtcn ,/,, 1θ  is given by (3.1). Now, under Poisson model, the OC 

function may be written as 

( ) .where,!/
0

π=λλ= λ−

=
∑ nieP i
c

i
A  (4.1) 

Thus, given a number ( ) ,,/,10 1 ctPP θ<< ∗∗  and ”,“g  we want to find 

the smallest positive integer n such that 

( ) .1!/
0

∗λ−

=

−<λ∑ Pie i
c

i
 (4.2) 

Since the probability of acceptance AP  can be shown to a function of 

,π=λ n  for given values of ,,/ 1 ct θ  and g. Therefore, minimum sample 

size n satisfying (4.2) have been obtained for some selected values of 1/ θt  

by using Newton’s method of successive approximation. The minimum 
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values of n have been obtained for ,99.0,99.0,95.0 ==∗ gP  ,75.0 50.0  

and .005.0,01.0,02.0,05.0,075.0.10.0,20.0,50.0,75.0,0.1/ 1 =θt  These 

are given in Table 1. For a specified values of the producer’s risk, say, 
0.25 one may interested in knowing that value of 2/ θt  will insure a 

producer’s risk less or equal to 0.25 for a given sampling plan. The value 
of 2/ θt  is smallest positive number for which the following equality 

holds: 

( ) .75.01
0

≥π−π












−

=
∑ ini
c

i i

n
 (4.3) 

For example, for particular 2,8 == cn  and 1/ 1 =θt  the values of 

2/ θt  comes 1.7061 and for other values 2,10 == cn  and 75.0/ 1 =θt  

the value of 2/ θt  comes 2.075 using Equation (4.3). 
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Table 1. Values of minimum sample size 95.0* =P  

  1/ θt  

g c 1.00 .75 .50 .20 .10 .075 .050 .020 .010 .005 

.90 1 7 8 11 25 49 65 96 239 476 950 

 2 9 11 15 34 65 86 128 317 632 1261 

 3 11 14 19 42 80 106 158 390 778 1553 

 4 13 16 22 49 95 125 186 461 918 4834 

 5 15 19 25 56 109 144 214 529 1055 2106 

 6 18 21 29 64 123 162 241 596 1188 2373 

 7 19 23 32 71 136 180 268 662 1319 2634 

 8 21 26 35 78 150 198 294 727 1449 2892 

 9 23 28 38 85 163 215 320 791 1576 3147 

 10 25 30 41 91 176 232 345 854 1702 3399 

.75 1 6 8 10 24 48 64 95 238 475 949 

 2 8 10 14 32 64 85 127 315 630 1260 

 3 10 13 17 40 79 104 156 389 776 1552 

 4 12 15 21 47 93 123 184 459 916 1832 

 5 14 17 24 54 107 142 212 527 1053 2104 

 6 16 20 27 61 120 160 239 594 1186 2370 

 7 18 22 30 68 134 177 265 659 1317 2631 

 8 20 24 32 75 147 195 291 724 1445 2889 

 9 22 26 36 82 160 212 316 787 1573 3143 

 10 24 28 39 88 172 229 342 851 1699 3395 

.50 1 5 6 9 22 45 61 92 234 472 946 

 2 7 8 12 29 60 81 123 311 626 1256 

 3 9 11 15 36 74 100 151 383 771 1546 

 4 11 13 17 43 87 118 178 453 910 1826 

 5 12 14 20 49 100 135 205 520 1046 2097 

 6 14 16 22 55 113 152 231 586 1178 2362 

 7 15 18 25 61 129 169 257 651 1308 2623 

 8 17 20 27 67 138 186 282 714 1436 2879 

 9 19 22 30 73 150 202 307 777 1562 3133 

 10 20 24 32 79 162 219 331 839 1687 3384 
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Table 1. (Continued) Values of minimum sample size 99.0* =P  

  1/ θt  

g c 1.00 .75 .50 .20 .10 .075 .050 .020 .010 .005 

.90 1 10 12 16 35 69 91 135 334 666 1330 

 2 12 15 20 45 87 115 171 423 843 1684 

 3 15 18 24 54 104 137 204 506 1008 2012 

 4 17 21 28 62 120 159 236 584 1164 2325 

 5 19 23 32 71 136 180 267 660 1315 2626 

 6 22 26 35 78 151 200 297 734 1462 2919 

 7 24 29 39 86 166 219 326 806 1606 3206 

 8 26 31 42 94 181 238 354 876 1747 3487 

 9 28 34 46 101 195 257 383 946 1885 3763 

 10 30 36 49 109 209 276 410 1015 2022 4036 

.75 1 9 11 15 34 67 89 133 333 664 1328 

 2 11 14 19 43 85 113 169 421 842 1682 

 3 14 17 23 52 102 135 202 503 1006 2010 

 4 16 19 26 60 118 156 234 582 1162 2322 

 5 18 22 30 68 133 177 264 657 1313 2623 

 6 20 24 33 76 148 197 294 731 1459 2916 

 7 22 27 36 83 163 216 322 802 1602 3202 

 8 24 29 40 90 177 235 351 873 1743 3483 

 9 26 31 43 98 191 253 379 942 1881 3759 

 10 28 34 46 105 205 272 406 1010 2017 4032 

.50 1 8 9 12 31 63 85 129 328 660 1324 

 2 10 11 16 39 80 108 164 416 836 1677 

 3 12 14 19 47 96 129 196 497 999 2004 

 4 14 16 22 54 111 149 226 574 1154 2315 

 5 15 18 25 61 125 169 256 659 1304 2615 

 6 17 20 28 68 139 188 284 721 1449 2906 

 7 19 22 30 75 153 206 312 792 1592 3191 

 8 21 24 33 81 167 224 340 861 1731 3471 

 9 22 26 36 88 180 242 367 930 1869 3747 

 10 24 28 38 94 193 260 393 997 2004 4018 
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5. Illustration and Discussion of the Result 

Assume that lifetime follows exponential distribution at both the 
stage of production. Suppose the experimenter is interested in 
establishing the true unknown average life at least 000,101 =θ  hours 

for the initial stage with confidence 99.0=∗P  and .75.0/ 12 =θθ=g  It 

is desired to stop the experiment at t = 1,000 hours. Then, for acceptance 
number ,2=c  the required n is the entry in Table 1 corresponding to    

the values of ,99.0,1.0000,10/000,1/ 1 ===θ ∗Pt  and .75.0=g  This 

number is n = 85. Thus, 85 units have been put on the test. If during 
1000 hours, no more than 2 failures out of 85 are observed, experimenter 
can assert with a confidence level of 0.99 that the average life at the 
initial stage is at least 10000 hours.  

Now, following Wang [25], Medhi [13], and Rajarshi and Sampath 
Kumar [15], it can be shown that the serial correlation co-efficient of the 
Markov chain given as ( +−=δ 121 p  ).21p  Consequently, we have 

( ) .1
12

δ−=π p  In order to study the effect of δ  on OC function, we 

consider the following plan .2and30 == cn  For some chosen values of 

1/ θt  and for ,50.0,50.0,00.0 −+=δ  the values of OC function have 

been worked out and results are shown in Table 2. That dependency has 
no effect on the OC functions when .01.0/ 1 <θt  For a visual 

comparison, OC curves have been drawn in Figure 1. The figure shows 
how the OC curve for a plan varies with the .δ  For the case of positive 
serial correlation the plan is tightened up, and thereby, lowering the OC 
curves (probability of acceptance). However, for negative serial 
correlation coefficient the plan becomes, more lax and the effect is to 
raise the OC curve. It is further seen from the Figure 1. that the 
dependency distorts the OC by causing an increase in procedure’s risk for 
positive serial correlation and an increase in consumer’s risk for negative 
serial correlation. 
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Table 2. Values of OC function for the plan  

Let 2,30 == cn  

 δ  

1/ θt  0.50 - 0.50 0.00 

0.01 0.9985 0.9989 0.9967 

0.02 0.9956 0.9928 0.9788 

0.03 0.7397 0.9791 0.9420 

0.05 0.4289 0.9272 0.8214 

0.07 0.2089 0.8485 0.6688 

0.10 0.0569 0.7038 0.4464 

0.12 0.0214 0.6035 0.3250 

0.15 0.0043 0.4636 0.1916 

0.20 0.0000 0.2800 0.0717 

0.30 0.0000 0.0886 0.0079 

0.40 0.0000 0.0256 0.0000 

 

Figure 1. OC curve. 
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6. Conclusion 

Life tests plan possesses wide potential applicability in industry 
insuring a higher standard of quality attainment. Here, we have 
introduced life tests plan for lots from retentive production processes. For 
practical utility of plan, the minimum sample sizes necessary to assure 
the specified mean life has been tabulated for exponential failure model. 
In the other words, tables are provided here which tailor-made, handy 
and ready-made use to the industrial shop-floor condition. The concept of 
this article may be of assistance in the development of plans for other 
failure models. 
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Appendix 

The following symbols (Nath [14]) are customarily used in defining 
transition matrix of retentive process: 

=11p  Conditional probability of production of a conforming item, 

given the preceding was conforming. 

=12p  Conditional probability of production of a non-conforming 

(defective) item, given the preceding was conforming. 

=21p  Conditional probability of production of a conforming item, 

given the preceding was defective. 

=22p  Conditional probability of production of a defective item, given 

the preceding was defective. 

=π  Probability of process producing a defective item when 
observations are dependent, irrespective of initial stage. 

g 


