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Abstract

Let B be arbitrary box of size B subset of Rx R and V be the set of lattice
solutions of the congruence bx = ¢y (mod p) in Z x Z, where p is prime number
and 1 < b, ¢ < p. We obtain a condition on the size B, so that BV is empty

intersection, and we also find a condition on B in order for B to contains a point
of V.

1. Introduction

For prime p and 1 < b, ¢ < p, let V be the set of all solutions of the

congruence bx = cy (mod p) in 72, and let B be arbitrary box of size B
in the XY-plane. We obtain an upper bound on the size B so that BNV

is empty, and also we find a lower bound on B in order for 5 to contain a

point of V.
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2 2
For 1<c<b<p and —¢ < p(mod p), where d = (b, ¢), we
prove any box of size
dp c
B>b+c+2(3)’ (1)

contains a point of V. For ¢ =1 and 1 < b < J_, we prove the bound in

1), B > 5 i 7 + 2 1s best possible in the sense that there exist a box of

size B = —2_ does not meet V.

b+1

If1<c<b< p with (b, ¢) =1 and y, <ganyboxofsize

S —
B>x0(b+c)—p+2x0, (2)

contains a point of V, where (xq, yg) is the first positive solution on the
. . . p 2p
line L :=bx —cy = p. For ¢ =1, b in the interval (E’ 5 ), we prove

the bound in (2) is best possible.

For 1 <c<b< p with (b,¢)=1 and y, > % any box of size

Y _
B>x0—y0+b—c+2(x0 c) 3)

meets V. For ¢ =1 and b in the interval (z?p, p), we prove the bound in
(3) 1s best possible.

Theorem 1. For 1 < b, ¢ < p, the congruence bx = cy(mod p) has a
non-zero solution x = (xq, yo) with |« = max(x, v) < vVp.

Proof. We look at the set of solutions of bx = ¢y(mod p) as a lattice

points on the lines defined by L; := bx — cy = k(dp), where d = (b, ¢) the

greatest common divisor of b and ¢, and &k € Z.
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We have (%, % ) as the first positive solution on Lq. Let (x;, y;) be

the first positive solution on L;. Define the two vectors u and v by

(i) L)

then the set of solutions V is given by V = uZ + vZ. That is V is a full

lattice generated by u and v, and the volume of the lattice is given by the
determinant

o

C
X1 — b
S RO
Y1 E

1
= E(bxl - Cy1)

=L =»p.

Consider the square S centered at the origin and defined by
S :=[-p, Yp]x[-p, Vp], then the volume of the square is 22 p.

Therefore, Minkowski’s convex body theorem guarantees the existence of
a non-zero solution (xg, yg) in the square S.

As an immediate result of Theorem 1, we have the following corollary.

Corollary 1. If B any box of size B > 2,/p in XY-plane centered at a
solution point (x;, y1) € V, then B contains another solution point
(xg, ¥2).

Proof. Let (xq, y9) be the non-zero solution in the square S that
obtained in Theorem 1. Translate the square S to be centered at (x;, y;),
then the point (xg, yg) translated to the point (x¢ +x1, yo + ¥1)-
Let (%9, ¥2) = (xo + %1, o + »1), then |xg —x;|=|xo| <+/p, and
lya = %] = |0 < Vp. Thatis (xg, y5) € B, and bxy = b(xg + %;) = (o
+y1) = cyz (mod p).
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Theorem 2. For 1 < ¢, b < p, there exist a box B of size B = b(ﬁvc

such that V (N B is empty intersection, where d = (b, c).

Proof. Consider the set of lines defined by L; := bx —cy = k(dp),
where d = (b, ¢) and k € Z, then Vis a lattice points on these lines. Let
B be the largest box of size B between any two consecutive lines L, and
L, 1. For simplicity, we consider the two lines L := bx —cy = 0 and
L; :=bx —cy = dp. Let (xq, yg) be the corner of the box on Lj, then
(xg + B, yo — B) is the corner of the box on L;. Therefore,

blxo + B) = c(yo — B) = dp
bxy —cyg +bB +cB =dp
(b+c)B=dp

_ dp
B_b+c'

In particularif b=c =1, B = %

In next theorem, we obtain a lower bound on the size B so that

V N B is a non-empty intersection.

2 2
Theorem 3. If 1<c<b<p and b” -~ ¢ < p, where d = (b, c),
. dp c . .
then any box of size B > + 2| = | contains a point of V.
b+c d
Proof. We have
b2 — c?
PR

b-c)b+c)<d?p
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d2p

b+c

b-c<

b dp c
E<b+c+g

b c
E<B+E’

where B is the size of the box obtained in Theorem 2. That is the vertical

distance between solutions on the line L; defined in Theorem 2 less than

B plus the horizontal distance between solutions on ;.

We are seeking the maximum enlargement of the box inscribed

between Lj; and L; in Theorem 2 without containing a solution. Let the
box obtained in Theorem 2 cornered on L; at the point (x, y), then there

(4

d

is a solution point (x;, ;) on L;, where x <x; <x+ and

y<y <y +§ <y+(B+ % ). Then any enlargement not containing a

solution can contribute at most (% )(B + % ) square units of area along
the right side of the box. Thus, the total contribution in any enlargement
is at most 4(% )(B + % ) square units of area. Hence the largest square

area A not containing a solution is at most

A = B? +4(§j(3+§)
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Remark 1. For 1 < b < J_ , and ¢ =1, the hypothesis of Theorem 3
is satisfied. Theorem 2 guarantees the existence of a box of size

B=-L_ not containing a solution, and Theorem 3 guarantees the

b+1

existence of a solution in any box of size B = bf 1 + 2. Thus, the results

obtained in Theorem 2 and Theorem 3 are best possible for these values
of b and c.

For 1 < ¢ < b < p, where (b, ¢) =1, let (xg, yg) be the first positive
solution on the line L := bx —cy = p. xg and yy plays a central roll in
next theorems. In the next theorem, we determine these values of x; and

Yo-

Theorem 4. For 1<c<b<p, and (b, c)=1, the first positive
solution (xg, ¥9) of bx = cy(mod p) on the line Ly =bx -cy=p is
given by

%}+1)—p+kb

(x0, ¥0) = [%} +1+A, b([ . ;

where )\ is the minimal non-negative solution of the linear congruence

bx = p - b([%} + 1) (mod c).
Proof. Here, we look at the solutions on any line L, as a vector
solution rather than a lattice point.

The first positive solution on L, : bx —cy = cp is given by the vector

{5
(2]

u =
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X0
If [ ] is the first solution on L; := bx —cy = p, then the vector
Yo

CXq
{ ] is a positive solution on L.. Therefore,
€Yo

In particular ¢ divides b ([%} ) p + Ab. That is,

Ab=p-— b([b}+lj (mod c).

And since x(, yg is the smallest positive solution, then A is the minimal

solution of the congruence

bx = p - b([b}+1) (mod ¢),

and

(x0, o) = [%}+1+X7b([%}+1c)—p+kb .
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Note. For the special case where ¢ =1 and g < b < p, we have

X0 2
A =0 and [2} =1, and hence =
b
Yo 2b-p

For better results, we consider two cases according as whether

Yo <% or yg > g, where (xq, yg) the first positive solution on L;

obtained in Theorem 4.

If yg < g, let L; and Ly be the two parallel lines determined by the

X0
vector v = and the two points (0, 0) and (c, b), respectively. Slop of

Yo
Ly is m= i)—o, the equation of L; is given by y = i}—ox, and the
0 0

equation of Lo is given by y = i}—o(x —c¢)+ b, the horizontal distance
0

between solutions on L; is x(, and the vertical distance is y,. Here we
view V the set of solutions of bx = cy(mod p) as a lattices point on a lines
parallel to L; and L.

Theorem 5. For 1 <c <b < p, with (b,c)=1 and y, < g, there

exist a box B of size B = p = p such that VN B is
xo+yo xob+c)-p
empty.

Proof. Let B be the largest possible box of size B between L; and

Ly. If the corner of the box on L; at (x, i/—o x), then the corner on Lg is
0

at (x — B, i/—ox + B). Therefore,
0

y—0x+B:y—0(x—B—c)+b
X0 X0



ON THE LATTICE SOLUTIONS OF CONGRUENCE ... 61

Bl+20)=p-20,
X0 X0

B:bxo_cyo_ P

Xo t+ Yo Xg + Yo

+bx0—p xgb+c)-p°
c

B - p cp

X0

Theorem 5 gives a necessary condition on the size of a box B to meet V.
Next theorem gives a sufficient condition on the size of a box in order to

meet V.

Theorem 6. For 1 < ¢ < b < p with (b, c) =1, and yy < %, let B be

the size of the box obtained in Theorem 5. If B + xq > yg, then any box of

cp

size B+2x0 = m

+ 2x( contains a point of V.

Proof. We try to enlarge the size of the box between L; and Ly as
much as possible without meeting V. If the corner of the box on L; at
(x, v), then there exist a solution (x;, y;) on L; such that x < x; < x + x
and y < y; < ¥+ Y9 < ¥+ B+ xy. Thus any enlargement not meeting V
contributes at most xy(B + x() square units of area along the right side

of the box. Therefore, the maximum square area A not meeting V is at

most

A = B? + 4xy(B + x¢)
2
= (B + 2xq)".
Remark 2. For the values where ¢ =1 and % < b < p, we have

X0 2
[ J = [ J, and y, <g© 2b-p <2© b <2?p' Theorem5 guarantees

2
Yo 2b-p
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the existence of a box B of size B = does not meet V, and

p
2b+1)-p

Theorem 6 guarantees any box of size B + 4 = + 4 does meet

P
2b+1)-p
V. Hence for the values where ¢ =1 and b belongs to the interval

( g , 2?1) ), the results of Theorem 5 and Theorem 6 are best possible.

Now we consider the case where yy > g

If yg > g, let L; and Ly be the two parallel lines determined by the

Xg —C
vector v = { J and the two points (0, 0) and (b, ¢), respectively.

Yo —b

Yo —b

P is negative, the equation of L; is given by
0 -

The slop of L; is m =

-b . . -b
y = yo—x, the equation of Ly is given by y = yo—(x —c¢)+b. The
Xg —C Xg —C

horizontal distance between solutions on L; is xy —c¢ and the vertical
distance is b — yg.
Theorem 7. For 1<c¢<b< p with (b,c)=1, and yy > g, there

p

— & such that B does not meet V.
X9 — Yy +b-c

exists a box of size B =

Proof. Let B be the largest box of size B between L; and L,. If

corner of the box on L; at (x, io ~b

x), then the corner on Lo at

Yo — b

(x + B,
Xg —C

x + B), hence

yo—_bx+B=(y0—_b)(x+B—c)+b
Xg —C Xg —C
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BQ_ZQLQ):b_dZQLQ)

Xg —C Xg —C
b_dlilﬁ)
Xg —C
B=—— "%
12079
Xg —C
B = be_CyO _ p

Xg—C—yo+b x9-yg+b-c’

Theorem 8. Let 1<c<b<p with (bc)=1 and y, >g. i
B +(x¢ —¢) > by, where B is the size of the box obtained in Theorem

7, then any box of size B + 2(xq — ¢) meets V.

Proof. If the corner of the box in Theorem 7 on L; at (x, y), then
there is a solution (x;, y;) on L; such that x —(xg —¢) < x; < x and
y<y <y+®-y))<y+B+(xg—c). Thus any enlargement of the
box not meeting V contributes at most (xq — ¢)(B + (xg — ¢)) square units

of area along the left side of the box. Therefore, the maximum square

area A not meeting Vis at most

A = B? + 4(xg — ¢)(B + (xq - ¢))

= (B +2(xg - 0))%.
Remark 3. The results in Theorem 7 and Theorem 8 are the best

when x( — ¢ is minimal and y, >%. Forc =1 and§<b<p, X9 —c =1,

and y, > % < 2b-p > g < b o> 2?1) Therefore, for these values where

¢ =1 and b belongs to the interval (%O, p), the results of Theorem 7

and Theorem 8 are best possible.
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