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Abstract 

In this paper, we study the global asymptotic behaviour and the periodic 
character of the rational difference equation 
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where the initial conditions 01, xx−  are arbitrary non-negative real numbers, 

and the parameters qp,  are positive real numbers. 

1. Introduction 

In this paper, we investigate the global asymptotic behaviour and the 
periodic character of solutions of the rational difference equation 
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where the initial conditions 01, xx−  are arbitrary non-negative real 

numbers, and the parameters qp,  are positive real numbers. 

Recently, there has been a great interest in studying the behaviour of 
nonlinear difference equations. For example, Camouzis et al. [1] 
investigated the behaviour of solutions of the rational recursive sequence 
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where ( )∞∈β ,0  and initial values ( ).,0, 01 ∞∈− xx  Kulenovic et al. [2] 

studied the following difference equation: 
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where ( )∞∈ ,0, qp  and initial values ( ).,0, 01 ∞∈− xx  

Amleh et al. [3] investigated the global asymptotic behaviour of 
solutions of some special types of the second-order rational difference 
equation 
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with non-negative parameters and with arbitrary non-negative initial 
conditions such that the denominator is always positive. For other 
related works, see [4-8]. 

The study of these equations is quite challenging and rewarding and 
is still in its infancy. We believe that the nonlinear rational difference 
equations are of paramount importance in their own right, and 
furthermore that results about such equations offer prototypes for the 
development of the basic theory of the global behaviour of nonlinear 
difference equations. 
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Let us introduce some basic definitions and some theorems that we 
need in the sequel, let I be an interval of real numbers and let 

,: IIIf →×  

be a continuously differentiable function. Then for every set of initial 
conditions { } ,, 01 Ixx ⊂−  the difference equation 

( ) ,,1,0,, 11 …== −+ nxxfx nnn   (1.2) 

has a unique solution { } .1
∞

−=nnx  

Definition 1. A point Ix ∈  is called an equilibrium point of 
Equation (1.2), if 

( )., xxfx =  

That is, ,xxn =  for ,0≥n  is a solution of Equation (1.2), or 

equivalently, x  is a fixed point of f. 

Definition 2. (Stability) 

(i) The equilibrium point x  of Equation (1.2) is locally stable, if for 
every ,0>  there exists 0>δ  such that for all Ixx ∈− 01,  with 

,01 δ<−+−− xxxx  

we have 

.1allfor, ≥<− nxxn   

(ii) The equilibrium point x  of Equation (1.2) is locally asymptotically 
stable, if x  is locally stable and there exists ,0>γ  such that for all 

Ixx ∈− 01,  with 

,01 γ<−+−− xxxx  

we have 

.lim xxnn
=

∞→
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(iii) The equilibrium point x  of Equation (1.2) is called a global 
attractor, if for every ,, 01 Ixx ∈−  we have 

.lim xxnn
=

∞→
 

(iv) The equilibrium point x  of Equation (1.2) is called globally 
asymptotically stable, if it is locally stable and a global attractor. 

(v) The equilibrium point x  of Equation (1.2) is unstable, if it is not 
locally stable. 

The linearized equation of Equation (1.2) about x  is 

,,1,0,1211 …=+= −+ nycycy nnn   (1.3) 

where 
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fcxxx
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∂
∂=  

and the characteristic equation of Equation (1.3) is 

.021
2 =−λ−λ cc   (1.4) 

Theorem A ([2]). 

(a) If both roots of the quadratic equation (1.4) lie in the open unit 
disk ,1<λ  then the equilibrium point x  of Equation (1.2) is locally 

asymptotically stable. 

(b) If at least one of the roots of Equation (1.4) has absolute value 
greater than one, then the equilibrium point x  of Equation (1.2) is 
unstable. 

(c) A necessary and sufficient condition for both roots of Equation (1.4) 
to lie in the open unit disk 1<λ  is 

.21 21 <−< cc  

In this case, the locally asymptotically stable equilibrium x  is also called 
a sink. 
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(d) A necessary and sufficient condition for both roots of Equation 
(1.4) to have absolute value greater than one is 

.11 212 ccandc −<>  

In this case, x  is a repeller point. 

(e) A necessary and sufficient condition for one root of Equation (1.4) 
to have absolute value greater than one and for the other to have absolute 
value less than one is 

.104 212
2
1 ccandcc −>>+  

In this case, the unstable equilibrium point x  is called a saddle point. 

(f) A necessary and sufficient condition for a root of Equation (1.4) to 
have absolute value equal to one is 

,1 21 cc −=  

or 

.21 12 ≤−= candc  

In this case, the equilibrium point x  is called a non-hyperbolic point. 

Theorem B ([2]). Let [ ]ba,  be an interval of real numbers and 

assume that 

[ ] [ ] [ ],,,,: bababaf →×  

is a continuous function satisfying the following properties: 

(a) ( )yxf ,  is non-increasing in [ ]bax ,∈  for each [ ],, bay ∈  and 

( )yxf ,  is non-decreasing in [ ]bay ,∈  for each [ ]., bax ∈  

(b) The difference equation (1.2) has no solutions of prime period two 
in [ ]., ba   

Then Equation (1.2) has a unique equilibrium point [ ]bax ,∈  and 

every solution of Equation (1.2) converges to .x  
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2. Main Results 

In this section, we study the asymptotic stability and the periodic 
character of the non-negative equilibrium points of Equation (1.1). We 
can see that the non-negative equilibrium points of Equation (1.1) are the 
non-negative solutions of equation 

.2 xxqp
xx

++
=  (1.5) 

So 01 =x  is always an equilibrium point of Equation (1.1). When ,1<p  

Equation (1.1) also possesses the unique positive equilibrium 
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1411

2 q
pqx −++−=  

Let [ ) [ )∞→∞ ,0,0: 2f  be a function defined by 

( ) ., 2 yqxp
yyxf

++
=  (1.6) 

Therefore, it follows that 
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We see that 
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The linearized equation of Equation (1.1) about x  is 

( ) ( )
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whose characteristic equation 
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2.1. Stability of the zero equilibrium point 

In this subsection, we investigate the stability of the zero equilibrium 
point of Equation (1.1). 

Theorem 1. For Equation (1.1), we have the following results: 

(i) Assume that ,1>p  then the zero equilibrium point of equation 
(1.1) is locally asymptotically stable. 

(ii) Assume that ,1<p  then the zero equilibrium point of Equation 
(1.1) is unstable. 

Proof. The linearized equation associated with Equation (1.1) about 
01 =x  has the form 

,,2,1,0,01
11 …==− −+ nypy nn  

so, the characteristic equation of Equation (1.1) about ,01 =x  is 

,012 =−λ p  

then the proof of (i), (ii) follows immediately from Theorem A. 

In the following theorem, we prove the global asymptotic stability of 
the zero equilibrium point ,01 =x  when .1>p  

Theorem 2. Assume that ,1>p  then the zero equilibrium point of 
Equation (1.1) is globally asymptotically stable. 
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Proof. We know by Theorem 1 that 01 =x  is locally asymptotically 

stable equilibrium point of Equation (1.1), and so it suffices to show that 
01 =x  is a global attractor of Equation (1.1) as follows 
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xx  

Since ,1>p  then 

.0lim =
∞→ nn

x  

This completes the proof. In the following theorem, we prove the local 
stability of the zero equilibrium point 01 =x  when .1=p  

Theorem 3. Assume that ,1=p  then the zero equilibrium point of 

Equation (1.1) is locally stable. 

Proof. Let ,0>  and let { }∞ −= 1nnx  be a solution of Equation (1.1) 

such that 

.01 <+− xx  

It suffices to show that 

.1 <x  

Now, 

,
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xqx
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and so the proof is complete. 

The next theorem shows that the zero equilibrium point of Equation 
(1.1) is globally asymptotically stable when .1=p  

Theorem 4. Assume ,1=p  then the zero equilibrium point of 

Equation (1.1) is globally asymptotically stable. 
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Proof. We know by Theorem 3 that 01 =x  is locally stable, and so it 

suffices to show that 01 =x  is a global attractor of Equation (1.1) 
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so, the even terms of this solution decrease to a limit ( ),0say 1 ≥L  and 

the odd terms decrease to a limit ( ).0say 2 ≥L  Thus, 
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which implies that 

,021 == LL  

so 

.0lim =
∞→ nn

x  

This completes the proof. 

2.2. Stability of the positive equilibrium point 

In this subsection, we investigate the stability of the positive 
equilibrium point of Equation (1.1). In the following theorem, we 
determine more precisely necessary conditions (on parameters) for 2x  to 

be locally asymptotically stable and for 2x  to be unstable. 

Theorem 5. Assume that ,1<p  then we have the following results: 

(1) If ( ) ,14
3

pq
−

<  then the positive equilibrium point 2x  of 

Equation (1.1) is locally asymptotically stable. 

(2) If ( ) ,14
3

pq
−

>  then the positive equilibrium point 2x  of 

Equation (1.1) is unstable (a saddle point). 
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Proof. By using the identity 
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pqp 2

1411312  

( ) ( )( ) ( )pqpqpqq −⇔<−+−+−= 14014133142
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( ),14133 pq −+<+  

which is valid iff 
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Also, 

( ) .211 2
22 <+−=− xqpc  

So, 2x  is locally asymptotically stable when ( ) .14
3

pq
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<  

It is clear that 04 2
2
1 >+ cc  and 
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141122 2

2
2 >
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⇔>⇔ q

pqqxxq  
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( ) 11411 >−++−⇔ pq  

( ) ( ) ( ) .14
341412141 pqpqpq
−

>⇔>−+⇔>−+⇔  

Thus 2x  is unstable (saddle point) when ( ) .14
3

pq
−

>  

2.3. Existence of prime period two solutions 

This subsection is devoted to discuss the condition under which there 
exist prime period two solutions. 

 

Theorem 6. For Equation (1.1), we have the following results: 

(i) Equation (1.1) possesses the prime-period two solutions 

,,1,0,1,0, …… pp −−  

when 

.1<p  

(ii) Equation (1.1) possesses the prime-period two solutions 

,,,,,, …… ΨΦΨΦ  

where the values of Φ  and Ψ  are the two positive and distinct roots of the 
quadratic equation 

( ) ,0111
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qptqt  

when 
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31 pqpandp
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Proof. Let 

,,,,, …… ΨΦΨΦ  
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be a prime period two solution of Equation (1.1). Then 

.and, 22 Ψ+Φ+

Ψ=Ψ
Φ+Ψ+

Φ=Φ
qpqp

 

If ,0=Φ  then ,01 >−=Ψ p  which implies that .1<p  If 0≠Φ  and 

,0≠Ψ  then 

,12 =Φ+Ψ+ qp   (1.11) 

and 

.12 =Ψ+Φ+ qp   (1.12) 

Subtracting (1.11) from (1.12) gives 

( ) ( ).22 Ψ−Φ=Ψ−Φq  

Since ,Ψ≠Φ  it follows that 

.1
q=Ψ+Φ  (1.13) 

Again adding (1.11) and (1.12) yields 

( ) ( ) ( ).1222 pq −=Ψ+Φ+Ψ+Φ   (1.14) 

It follows by (1.13) and (1.14) and the relation 

( ) ,,allfor2222 R∈ΨΦΦΨ−Ψ+Φ=Ψ+Φ  

that 

( ) .11
2q
qp +−

=ΦΨ  (1.15) 

So, Φ  and Ψ  are the roots of the quadratic equation 

( ) .0111
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+−
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qptqt  
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Since Φ  and Ψ  must be non-negative and distinct real numbers, so 

( )[ ] ,111410 ≤−+−< pq  

which implies that 

( ) .1
1

14
3and1 pqpp

−
≤<

−
<  

This completes the proof. 

Theorem 7. The prime-period two solutions 

,,1,0,1,0, …… pp −−  

occurs iff 

( ) ( ) ( ) ( ).0,1,1,0, 0101 pxxorpxx −=−= −−  

Proof. Consider the case ( ) ( )pxx −=− 1,0, 01  (The proof when 

( ) ( )0,1, 01 pxx −=−  is similar and will be omitted.), then 01 =x  and 

,12 px −=  and the proof follows by induction. Now suppose that there 

exists 1≥N  such that 

.1,0 1 pxx NN −== +  

Then from Equation (1.1), we see that 
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and the proof follows by induction. 
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−
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Then every solution of Equation (1.1) converges to a period-two solution 
with a basin 

( ) ( ).,11,0 ∞−×−= ppS  

Proof. Let { }nx  be a solution of Equation (1.1) with initial conditions 

( ) ., 01 Sxx ∈−  Then from Equation (1.1), we see that 
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Also from Equation (1.16), we have 
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Thus by induction, we see that 

( ) ,,2,1,0,, 212 …=∈− nSxx nn  

and 

.,2,1,0,, 1212222 …=<< −++ nxxxx nnnn  

So the sequence { }nx2  decreases to a limit ( ),1say 1 pL −≥  and the 

sequence { }12 +nx  decreases to a limit ( ),1say 2 pL −≤  thus, 
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which implies that 

.0,1 21 =−= LpL  

This completes the proof. 
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Theorem 9. Let ,1<p  and ( ) ,14
3

pq
−

<  then the positive 

equilibrium point 2x  of Equation (1.1) is globally asymptotically stable 

with basin ( ) .,0 2∞  

Proof. We know by Theorem 5 that 2x  is locally asymptotically 

stable, and so it suffices to show that 2x  is a global attractor of Equation 

(1.1). From Equations (1.7) and (1.8), we have ( )yxf ,  defined by 

Equation (1.6) is decreasing in ( )∞∈ ,0x  for each ( )∞∈ ,0y  and 

increasing in ( )∞∈ ,0y  for each ( ).,0 ∞∈x  Recall by Theorems 6 and 7 

that there exist no solutions of Equation (1.1) with prime period two 

when ( )pq
−

< 14
3  and ( ) ( ) .,0, 2

01 ∞∈− xx  Also 

( ) ( ).,0,allfor,1,0 2 ∞∈<
++

=< yx
yqxp

yyxf  

So by Theorem B, 

.lim xxnn
=

∞→
 

Conjecture. Assume ,1<p  and .1
1

pq
−

>  Show that the solution 

of Equation (1.1) converges to a period two solution p−1,0  when 

( ) ( ) ( ) ( ) ( ) .,11,01,0,1, 22
01 ∞−−−×∞−=− ppppxx ∪∪  

Open problem. Investigate the global behaviour of Equation (1.1) 

when 1<p  under the condition ( ) .14
3

pq
−

=  
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