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Abstract

In this paper, we study the global asymptotic behaviour and the periodic
character of the rational difference equation

Xn-1

5 , n=0,1,..
P+aqxp +Xp1

Xn+l =

]

where the initial conditions x_1, xg are arbitrary non-negative real numbers,

and the parameters p, ¢ are positive real numbers.
1. Introduction

In this paper, we investigate the global asymptotic behaviour and the

periodic character of solutions of the rational difference equation
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x
Xpi1 :’;——1, n=012, .., (1.1)
Dtax, + X,
where the initial conditions x_j, x; are arbitrary non-negative real

numbers, and the parameters p, ¢ are positive real numbers.

Recently, there has been a great interest in studying the behaviour of
nonlinear difference equations. For example, Camouzis et al. [1]

investigated the behaviour of solutions of the rational recursive sequence

2
Bxy

’
1+ x%_l

Xn+1 =
where B € (0, ©) and initial values x_;, xg € (0, ©). Kulenovic et al. [2]
studied the following difference equation:

X
PP = S T
D+ax, +X,1

where p, ¢ € (0, ©) and initial values x_;, xy € (0, ).

Amleh et al. [3] investigated the global asymptotic behaviour of
solutions of some special types of the second-order rational difference
equation

o+ PBxpX, 1 + ¥Xn

X = n=012 ..
n+l A+anxn_1 +an_1’ T ’

with non-negative parameters and with arbitrary non-negative initial
conditions such that the denominator is always positive. For other

related works, see [4-8].

The study of these equations is quite challenging and rewarding and
is still in its infancy. We believe that the nonlinear rational difference
equations are of paramount importance in their own right, and
furthermore that results about such equations offer prototypes for the
development of the basic theory of the global behaviour of nonlinear

difference equations.
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Let us introduce some basic definitions and some theorems that we

need in the sequel, let I be an interval of real numbers and let
f:IxI—> 1,

be a continuously differentiable function. Then for every set of initial

conditions {x_j, xo} < I, the difference equation

Xpi1 = f(xp, xp_1), n=0,1,.., (1.2)

oo}

has a unique solution {x,}, __;.

Definition 1. A point x € I is called an equilibrium point of
Equation (1.2), if

x = f(x, x).
That is, «x, =x, for n>0, is a solution of Equation (1.2), or
equivalently, X is a fixed point of f.
Definition 2. (Stability)

(1) The equilibrium point x of Equation (1.2) is locally stable, if for

every ¢ > 0, there exists 8 > 0 such that for all x_;, xy € I with
e — x| +|xg —X| < §,
we have
|x, —X| <e, forall n=>1.

(i1) The equilibrium point X of Equation (1.2) is locally asymptotically
stable, if x 1is locally stable and there exists y > 0, such that for all

x_1, X9 € I with
|x 1 — X[ +|xg — X[ <7,

we have
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(i11)) The equilibrium point X of Equation (1.2) is called a global

attractor, if for every x_;, xo € I, we have

lim x, = x.
n—

(iv) The equilibrium point x of Equation (1.2) is called globally
asymptotically stable, if it is locally stable and a global attractor.

(v) The equilibrium point x of Equation (1.2) is unstable, if it is not

locally stable.

The linearized equation of Equation (1.2) about x is

Ynsl = C1¥p +CoVn-1, n=0,1 ..., (1.3)
where
of - — of - —
¢ = ax}; (x’ QC), Co = axn—l (x7 X),

and the characteristic equation of Equation (1.3) is
32—k —cy = 0. (1.4)
Theorem A ([2]).

(a) If both roots of the quadratic equation (1.4) lie in the open unit
disk [\ <1, then the equilibrium point X of Equation (1.2) is locally
asymptotically stable.

(b) If at least one of the roots of Equation (1.4) has absolute value
greater than one, then the equilibrium point x of Equation (1.2) is

unstable.

(c) A necessary and sufficient condition for both roots of Equation (1.4)

to lie in the open unit disk |A| <1 is
|C1| <1—02 < 2.

In this case, the locally asymptotically stable equilibrium x is also called

a sink.
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(d) A necessary and sufficient condition for both roots of Equation

(1.4) to have absolute value greater than one is
lea| >1  and  eg| < |1 - cq).
In this case, x is a repeller point.

(e) A necessary and sufficient condition for one root of Equation (1.4)
to have absolute value greater than one and for the other to have absolute

value less than one is
¢ +4coy >0 and |o|>|1-cyl.
In this case, the unstable equilibrium point x is called a saddle point.

(f) A necessary and sufficient condition for a root of Equation (1.4) to

have absolute value equal to one is
ler] = 1= caf,
or
g =-1 and |¢|<2.
In this case, the equilibrium point x is called a non-hyperbolic point.

Theorem B ([2]). Let [a, b] be an interval of real numbers and

assume that
f :[a, b]x[a, b] = [a, b],
is a continuous function satisfying the following properties:
(@) f(x, y) is non-increasing in x € [a, b] for each y € [a, b], and

f(x, y) is non-decreasing in y € [a, b] for each x € [a, b].

(b) The difference equation (1.2) has no solutions of prime period two
in [a, b].
Then Equation (1.2) has a unique equilibrium point x € [a, b] and

every solution of Equation (1.2) converges to x.
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2. Main Results

In this section, we study the asymptotic stability and the periodic
character of the non-negative equilibrium points of Equation (1.1). We
can see that the non-negative equilibrium points of Equation (1.1) are the

non-negative solutions of equation

X

X = (1.5)

p+aqx 2,5
So x; = 0 is always an equilibrium point of Equation (1.1). When p < 1,
Equation (1.1) also possesses the unique positive equilibrium

_  —1+41+4q9(1-p)
X9 =

= %

Let f : [0, ©)* = [0, ) be a function defined by

flx, y) = —2—. (1.6)
p+tagx +Yy

Therefore, it follows that

-2
fx(xa y) = %7 (17)
(p+qx” +y)
2
+qx
fyle, y) = —L2-E— (1.8)
(p+qx” +y)
We see that
=2
= fx(f, 3?) = %, (19)
(p+qx” +Xx)
_ p+q3?2
cg = fy(x, ¥) = (1.10)

p+q3?2+3?2'
(
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The linearized equation of Equation (1.1) about x is

2qx2 + gx?
Vel + q p+d yo1=0, n=0,12 ...,

(p+qx2+x) " (p+qx? +%)>

whose characteristic equation

2

2qx p+ qa?2

22 =0, n=0,1,2, ...

(p+q¥* +x)  (p+gqx” +%)
2.1. Stability of the zero equilibrium point

In this subsection, we investigate the stability of the zero equilibrium

point of Equation (1.1).
Theorem 1. For Equation (1.1), we have the following results:

(1) Assume that p > 1, then the zero equilibrium point of equation

(1.1) is locally asymptotically stable.

(1) Assume that p <1, then the zero equilibrium point of Equation

(1.1) is unstable.

Proof. The linearized equation associated with Equation (1.1) about

x; = 0 has the form
1
yn+1_;yn—lzo’ n:0’15 27---;

so, the characteristic equation of Equation (1.1) about x; = 0, is

then the proof of (i), (i1) follows immediately from Theorem A.

In the following theorem, we prove the global asymptotic stability of

the zero equilibrium point x; = 0, when p > 1.

Theorem 2. Assume that p > 1, then the zero equilibrium point of

Equation (1.1) is globally asymptotically stable.
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Proof. We know by Theorem 1 that x; = 0 is locally asymptotically

stable equilibrium point of Equation (1.1), and so it suffices to show that

x; = 0 is a global attractor of Equation (1.1) as follows

Xn-1
OSx,Hl =— < Xp_1-

S|

2
p+ax; +x,q
Since p > 1, then

lim x, = 0.
n—w

This completes the proof. In the following theorem, we prove the local

stability of the zero equilibrium point x; = 0 when p = 1.

Theorem 3. Assume that p =1, then the zero equilibrium point of

Equation (1.1) is locally stable.
Proof. Let ¢ > 0, and let {x,},__; be a solution of Equation (1.1)
such that
|1 ]+ |xo] < <
It suffices to show that
x| < e
Now,

X_
0<x1=—1£x_1<e,

1+ qx(z) +x_3

and so the proof is complete.

The next theorem shows that the zero equilibrium point of Equation

(1.1) is globally asymptotically stable when p = 1.

Theorem 4. Assume p =1, then the zero equilibrium point of

Equation (1.1) is globally asymptotically stable.
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Proof. We know by Theorem 3 that x; = 0 is locally stable, and so it
suffices to show that x; = 0 is a global attractor of Equation (1.1)

Xn-1

O < xn+1 = 2
1+qgx;, +x,1

< Xn-1>

so0, the even terms of this solution decrease to a limit (say L; > 0), and
the odd terms decrease to a limit (say Ly > 0). Thus,

L

Ly
1+ qL% + L

Ly P
1+qL%+L2

L

which implies that

SO

This completes the proof.
2.2. Stability of the positive equilibrium point

In this subsection, we investigate the stability of the positive
equilibrium point of Equation (1.1). In the following theorem, we

determine more precisely necessary conditions (on parameters) for xo to

be locally asymptotically stable and for x5 to be unstable.
Theorem 5. Assume that p < 1, then we have the following results:

1) If ¢ <ﬁ, then the positive equilibrium point X9 of

Equation (1.1) is locally asymptotically stable.

@ If q> then the positive equilibrium point X, of

_3
41 -p)’
Equation (1.1) is unstable (a saddle point).
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Proof. By using the identity
— 9
qxe” +x9 +p =1,

we see that

— 2
— 2qx _ 92
c = _22_2:—2qx2,
(p +qxy” +X3)
D+ qiy” 2
Co 2 = p+qxg”.

C(praEt T )
So,
lef|+¢3 —1=8¢%% + p-1=301-p—%y)+p—1=2(1-p)- 3%,

:2(1_p)_3(—1+«/m]

2q
:%<4q(1—p)+3—3\/m)<0© 4q(1 - p)
+3 < 3m,

which is valid iff

3

T 41-p)

Also,

l-cy =1-(p+qxy?)<2.
So, X9 is locally asymptotically stable when ¢ < L
4(1-p)
It is clear that 012 +4cy > 0 and

el >l —col & |-20%.% > 1 - p-qio?| =1 -1+
1 2 2 2 2

—-1+41+4q9(p-1) Vs 1
2q

= 2q3?22 > .7?2 = 2q(
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S -1+41+4q9(p-1) >1

3
S W1+ 4 -1)>2< 14491 -p)>4 < q>—7———.
V1+4q(p-1) q(1 - p) 9 4T p)
Thus xq is unstable (saddle point) when ¢ > L
4(1 - p)

2.3. Existence of prime period two solutions

This subsection is devoted to discuss the condition under which there

exist prime period two solutions.

Theorem 6. For Equation (1.1), we have the following results:
(1) Equation (1.1) possesses the prime-period two solutions
... 0,1-p,0,1-p, ...,
when
p <1
(11) Equation (1.1) possesses the prime-period two solutions

e, O, D, L,

where the values of ® and ¥ are the two positive and distinct roots of the

quadratic equation

t2—lt+(p_1)Q+1 =0,
q q>

when

p<l and ——-<qg<-—0.
4(1 - p) 1-p

Proof. Let

O, 0, Y, ..,
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be a prime period two solution of Equation (1.1). Then

o = @ , and VY = ki

_p+q‘P2+(I) p+q(1)2+‘1’.

If ® =0, then ¥ =1- p > 0, which implies that p <1. If ® = 0 and

Y = 0, then
2 _
p+q¥P° +d =1,
and
2 _
p+qd° +V¥ =1.
Subtracting (1.11) from (1.12) gives
g(®? - ¥?) = (0 - V).

Since ® # P, it follows that
O+ Y = l.
q

Again adding (1.11) and (1.12) yields
q(®% + ¥2) + (@ + ¥) = 2(1 - p).
It follows by (1.13) and (1.14) and the relation
O+ w2 = (@ + V)2 -20¥ forall @, V¥eR,
that

oy = (P-Da+1
q2

So, ® and ¥ are the roots of the quadratic equation

2—£t+—(p_1;q+1 =0.

q

t

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)
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Since ® and ¥ must be non-negative and distinct real numbers, so

0<1-41+q(p-1)]<1,

which implies that

3 1

p<l and ——<qg<—.
4(1 - p) 1-p

This completes the proof.
Theorem 7. The prime-period two solutions

e..0,1-p,0,1-p, ...,

occurs iff

(x1,%0) =(0,1-p) or (x_1,%)=(1-p,0).

53

Proof. Consider the case (x_i, xg)=(0,1-p) (The proof when

(x_1, x9) = (1 - p, 0) is similar and will be omitted.), then x; = 0 and

X9 =1— p, and the proof follows by induction. Now suppose that there

exists N > 1 such that
xy =0, xyg=1-p
Then from Equation (1.1), we see that

XN _—
_ijﬁ]—l:l_p’

and

_ XN-2
2
p+ql-p) +xy_9

= XN-_9 = 0,

and the proof follows by induction.

Theorem 8. Assume p <1, q > 1 1 and

2
pxo > (1- p)(p + £ J
(p+aqxg +x1)

(1.16)
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Then every solution of Equation (1.1) converges to a period-two solution

with a basin
S=(0,1-p)x(1- p, o).
Proof. Let {x,,} be a solution of Equation (1.1) with initial conditions

(x_1, x9) € S. Then from Equation (1.1), we see that

x_ x_ xX_
X = 21 < N 1 3 =1 1 <x_1 <1l-p,
P +axy +x p+g(1—p) +X g !

X0 X0 X0
X9 = B) < B = B < Xq-

p+axy +xg p+agxi +1-p gxi +1

Also from Equation (1.16), we have
X0 X0 X0

X9 = 9 = D) > o =1- D.

+qgxi +x = _

p+axi +xg p+q(x+j vxg Py P T
p+qx0 +X_1

Thus by induction, we see that
(x95-1, X9,) €S, n=0,1,2 ...,
and
X9pt+o < Xon, Xont1 < Xon_1, B =0,1,2 ...
So the sequence {xy,} decreases to a limit (say L; >1- p), and the
sequence {xq,,; } decreases to a limit (say Ly <1 - p), thus,

Ly

L
L = ; 9= ——— >
p+qli + Ly

=— 1 L
p+ql3+ L,

which implies that
L]_ =1- P, L2 = 0.

This completes the proof.
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3

————, then the positive
41 - p)

Theorem 9. Let p<1, and g <
equilibrium point x9 of Equation (1.1) is globally asymptotically stable
with basin (0, ©)?.

Proof. We know by Theorem 5 that x5 is locally asymptotically
stable, and so it suffices to show that x5 is a global attractor of Equation
(1.1). From Equations (1.7) and (1.8), we have f(x, y) defined by
Equation (1.6) is decreasing in x € (0, ) for each y € (0, ©») and
increasing in y e (0, ©) for each x € (0, ©). Recall by Theorems 6 and 7

that there exist no solutions of Equation (1.1) with prime period two

when ¢ < and (x_;, x9) € (0, ©)%. Also

_ 3
4(1 - p)

O<f(x,y)=+<1, for all  x, y € (0, »).
p+agx~ +y

So by Theorem B,

lim x, = x.

. Show that the solution

Conjecture. Assume p <1, and ¢q > 1 1

of Equation (1.1) converges to a period two solution 0, 1 — p when

(x4, %0) =1~ p,0)x(0,1-p)U(0,1-p)*U(l - p, ).

Open problem. Investigate the global behaviour of Equation (1.1)

3

when p <1 under the condition ¢ = ——.
4(1 - p)
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