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Abstract 

In this paper, we estimate probability { }YXP <  when X and Y are two 
independent random variables from Dagum distribution. We obtain maximum 
likelihood estimator and its asymptotic distribution. We also perform a 
simulation study. 

1. Introduction 

The reliability of a system is the probability that when operating 
under the state of the environment, the system will perform its intended 
function adequately. For stress-strength models, both the strength of the 
system, X, and the stress, Y, imposed on it by its operating environments 
are considered random variables. In addition, R, can be defined as the 
probability that the system is strong enough to overcome the stress 
imposed on it. This model is also known as the load-capacity model in the 
context of solid mechanics or structural engineering. ( )XYP <  is an 

important tool in other fields too, for example, biometry, physics, and 
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engineering. Inference regarding ( ),XYP <  defining the reliability of 

the system, has been widely discussed in literature, when X and Y are 
assumed to be independent random variables. See, for example, Amin [6], 
Basu [7], Downtown [17], Tong [31, 32], Kelley et al. [23], Beg [8], Iwase 
[22], McCool [25], Ivshin [21], Ali et al. [5], Ali et al. [3, 4], Ali and Woo 
[1, 2], Pal et al. [26], Raqab and Kundu [27], Raqab et al. [28], Rezaei et 
al. [29], Masoom et al. [24], Wong [33], and Francisco et al. [20]. 

In this article, we consider the reliability, R, when X and Y are 
independent but not identically distributed three parameter Dagum 
random variables. In the 1970s, Camilo Dagum embarked on a quest for 
a statistical distribution closely fitting empirical income and wealth 
distributions. Not satisfied with the classical distributions, he looked for 
a model accommodating the heavy tails present in empirical income and 
wealth distributions as well as permitting an interior mode. He end up 
with the Dagum type I distribution, a three-parameter distribution, and 
two fourparameter generalizations (Dagum [14, 15, 16]). The Dagum 
distribution is also called the inverse Burr, especially in the actuarial 
literature, as it is the reciprocal transformation of the Burr XII. 
Nevertheless, unlike the Burr XII, which is widely known in various 
fields of science, the Dagum distribution is not much popular, perhaps, 
because of its difficult mathematical tractability. Since Dagum proposed 
his model as income distribution, its properties have been appreciated in 
economics and financial fields and its features have been extensively 
discussed in the studies of income and wealth. Kleiber and Kotz [9] and 
Kleiber [10] provided an exhaustive review on the origin of the Dagum 
model and its applications. Recent contributions from Quintano and 
D’Agostino [11] adjusted the Dagum model for income distribution to 
account for individual characteristics, while Domma et al. [18, 19] 
studied the Fisher information matrix in doubly censored data from the 
Dagum distribution and reliability studies of the Dagum distribution. 
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The Dagum distribution has the following distribution function for 
:0>X  

( ) ( ) ,0,1 >λ+= θ−β− xxxF  (1.1) 

with probability density function 

( ) ( )( ) ( ) ,0,1 11 >λ+λβθ= +θ−β−+β− xxxxf  (1.2) 

where 0>λ  is the scale parameter and 0, >θβ  are the shape 

parameters. 

The rest of paper is organized as follows. In Section 2, we discuss the 
maximum likelihood estimator of R. In Section 3, we assume the 
parameters λ  and β  are assumed known. In Section 4, Bayesian 

estimation of R is discussed. Simulation studies is devoted in Section 5. 

2. Likelihood Estimation of R 

Let X and Y are two independent Dagum random variables with 
parameters ( )1,, θβλ  and ( ),,, 2θβλ  respectively. Therefore, the reliability 

of the system 

( )XYPR <=  
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R can be computed using the following definition as well 

( ) ( )xXPxXXYPR ==<= ∫
∞

\
0

 

 ( )( ) ( )( ) dxyxx
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 [ ] .1
211
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To find the MLE estimator of R, we need first to estimate the shape 
parameters 1θ  and .2θ  Let ( )nXXX ,,, 21 …  and ( )mYYY ,,, 21 …  be 
two independent random samples from Dagum ( )1,, θβλ  and Dagum 
( ),,, 2θβλ  respectively. The likelihood function of ,,, 1θβλ  and 2θ  for 
the observed samples is 
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Therefore, the log-likelihood function of ,,, 1θβλ  and 2θ  as follows: 
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The estimators ,ˆ,ˆ,ˆ 1θβλ  and 2θ̂  of the parameters ,,, 1θβλ  and ,2θ  

respectively, can be then obtained as the solution likelihood equations 
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From (2.5) and (2.6), we have 
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Substituting (2.7) into (2.3) and (2.4), we have 
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Thus, to derive the MLE estimators of 1,, θβλ  and 2θ  we have to solve 

the two nonlinear Equations (2.8) and (2.9) with respect to λ  and ,β  and 

then we can use (2.7) with respect to λ̂  and β̂  to obtain the MLE of 1θ  

and 2θ  as 
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Once we have obtained the estimators of 1θ  and ,2θ  the MLE of R 

becomes 

[ ] .ˆˆˆˆ 1
211

−θ+θθ=R   (2.11) 
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3. The Maximum Likelihood Estimator 
of R if λ  and β  are Known 

In this section, we consider the problem of estimation of R when both 
λ  and β  are known. Without loss of generality, we can assume that 

,1=β=λ  i.e., we assume that the independent samples ( )nXXX ,,, 21 …  

and ( )mYYY ,,, 21 …  are drawn from Dagum ( )1,1,1 θ  and Dagum 

( ),,1,1 2θ  respectively. Based on that the MLE of R and its distributional 

properties are 

[ ( )] [ ( )] .1logˆand,1logˆ 11

1
2

11

1
1

−−

=

−−

=

+=θ+=θ ∑∑ j

m

j
i

n

i
ymxn  (3.1) 

[ ( )] [ ( )] 11

1

11

1
21 1log1logˆˆ −−

=

−−

=

+++=θ+θ ∑∑ j

m

j
i

n

i
ymxn  

[ ( ) ( )]1

1

1

1
1log1log −

=

−

=

+++= ∑∑ i

n

i
j

m

j
xmyn  

[ ( ) ( )] ,1log1log 11

1

1

1

−−

=

−

=

++× ∑∑ j

m

j
i

n

i
yx   (3.2) 

and 

[ ( )] [ ( ) ( )] .1log1log1logˆ 11

1

1

1

1

1

−−

=

−

=

−

=

++++= ∑∑∑ i

n

i
j

m

j
j

m

j
xmynynR  (3.3) 

 

 

 

 



ALAA AHMED 174

4. Simulation Study 

In this section, we present a simulation study to see the performance 
of an estimator R at different values for parameters. 

n m R R(est) MSE 

0.5 0.508 0.024 

0.33 0.348 0.02 

0.25 0.269 0.016 

0.571 0.5655 0.023 

0.625 0.6144 0.022 

0.667 0.6528 0.021 

5 5 

0.75 0.7314 0.017 

0.5 0.508 0.018 

0.33 0.352 0.016 

0.25 0.271 0.013 

0.571 0.574 0.017 

0.625 0.624 0.016 

0.667 0.663 0.015 

5 10 

0.75 0.743 0.011 

0.5 0.495 0.018 

0.33 0.333 0.014 

0.25 0.254 0.01 

0.571 0.565 0.17 

0.625 0.615 0.017 

0.667 0.648 0.016 

10 5 

0.75 0.735 0.013 

0.5 0.504 0.011 

0.33 0.336 0.009 

0.25 0.259 0.007 

0.571 0.564 0.012 

0.625 0.619 0.011 

0.667 0.658 0.009 

10 10 

0.75 0.741 0.006 
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n m R R(est) MSE 

0.5 0.4988 0.011 

0.33 0.348 0.009 

0.25 0.258 0.006 

0.571 0.574 0.01 

0.625 0.623 0.009 

0.667 0.664 0.008 

10 15 

0.75 0.742 0.006 

0.5 0.499 0.01 

0.33 0.334 0.008 

0.25 0.255 0.006 

0.571 0.566 0.009 

0.625 0.62 0.009 

0.667 0.652 0.009 

15 10 

0.75 0.74 0.009 

0.5 0.501 0.008 

0.33 0.336 0.006 

0.25 0.255 0.006 

0.571 0.571 0.008 

0.625 0.621 0.007 

0.667 0.666 0.006 

15 15 

0.75 0.746 0.005 

0.5 0.496 0.004 

0.33 0.331 0.003 

0.25 0.253 0.002 

0.571 0.568 0.004 

0.625 0.624 0.004 

0.667 0.665 0.003 

25 25 

0.75 0.747 0.002 
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n m R R(est) MSE 

0.5 0.5001 0.001 

0.33 0.33 0.001 

0.25 0.25 0.002 

0.571 0.568 0.002 

0.625 0.622 0.002 

0.667 0.668 0.001 

50 50 

0.75 0.746 0.001 

5. Conclusion 

In this paper, we have considered the estimation of the probability 
{ }YXP <  when X and Y are two independent random variables from 

Dagum distribution. We found maximum likelihood estimator and used 
its asymptotic distribution to construct confidence intervals. We 
performed a simulation study to show the consistency property of the 
MLE estimators of R. 
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