Journal of Pure and Applied Mathematics: Advances and Applications
Volume 13, Number 2, 2015, Pages 75-95

IDENTITIIES AND PARSEVAL TYPE RELATIONS
FOR THE L,-TRANSFORM

NESE DERNEK

Department of Mathematics
Marmara University

Istanbul

Turkey

e-mail: ndernek@marmara.edu.tr

Abstract

In the present paper, the Laplace transform, its generalizations the Lo and
L4 transforms, the Widder transform, and the P, transform are examined.
The main results of the paper, Parseval-Goldstein type theorems and
corollaries, are proven in Section 2. Some illustrative examples for these
relations are given in Section 2 and Section 3. The theorems and the lemmas
that are proven in this article are new useful relations for evaluating indefinite
integrals of special functions. In Section 3, the author derives some infinite
integrals which include the error function, the complementary error function,
elementary functions, and some special functions.

1. Introduction

The Laplace transform is defined as

L@ 3} = [ e ) &
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Sadek and Yiirekli [10] introduced the Lq-transform as a generalization

of the Laplace transform as follows:
O 22
Loif(x); v} = Io xe f(x)dx. ©)
Dernek et al. [2] presented the £, -transform
ar—
L4i{f(x); y) = Io x%e™™ Y f(x)dx. 3)

The Laplace transform, the Lq-transform, and the L[4-transform are

related by the formula
L4{f(x); v} = %L’z{f(xl/z); y2} = %L‘{f(xl/él); y? } (4

The Widder transform, the P,-transform [2], the K-transform of

order v are defined, respectively, by

Pife): o) = [ as G

© .3
Pty ) = [ ©
KA 9} = [ @)K ) ), ™

where K, denotes the modified Bessel function of second kind of order v.

The error function and the complementary error function are defined

as

erf(x) = % j: e_u2 du, 8

erfe(x) = % J‘:Jefuzdu, 9)
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respectively. It is well-known that erf(x) + erfe(x) = 1. In Dernek et al.
[2], using the following identities involving the L,-transform and the

Widder transform:

[ eatn(y): 512 tgy: i = [ 5P F0)E4 (£4lgw): ) yidy. (10)

1
Cyff(@): v} = 3 Paif(@): o}, (11)
several transform pairs, including some other integral transforms were
evaluated.

The objective of this paper is firstly to show that the Parseval-
Goldstein-type relations yield some simple techniques for evaluating
infinite integrals involving special functions. The second aim is to

establish new identities involving the Lo-transform, the L,-transform,
the error function, the complementary error function, the P -transform,
and the K-transform. The identities generalize some of the earlier

formulas in ([1], [2], [4], [11]). Using these new identities, we can extend

the table of integral transforms.
2. The Main Theorems

Lemma 2.1. The Parseval-Goldstein-type identity

[ eealron 0+ 24 ey te): whdx = L4070 Pals) o) 2}

(12)
holds true, provided that the integrals involved converge absolutely.

Proof. In formula (10), that was previously obtained in [2], we set

h(y) = e £(3). (13)
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Using the definition of L,-transform (3), we deduce the following

property:
£a{e flo)s w) = Lafons (F 24} (1)

Substituting the relations (13) and (14) into (10) and using the relation
(11), we obtain the assertion (12).

Remark 2.2. If we set f(y) =1 into (12), we have
Puilalgw); x}; 2} = L4{Pylgw); v} 2}, (15)

provided that the integrals involved converge absolutely. The formula

(15) was previously obtained in [2].

Lemma 2.3. We have
/cu{y“”/%*y‘**f(y); a} = 2L, {y" 2K, (@) (y); ). (16)

Proof. The relation (16) is obtained from the definitions of the

L4-transform and the K-transform.

Theorem 2.4. The following identities hold true:

a2v J.oo x—4v—1

LAWK 2} = Ll f (ot + 2 Wi,

0 ea4/4x4
1
and
v+1/2 2u+l 4_47\1/4
y 1/2). 2| _a 4(v-1 C(1+4t72%) )
’CV{Wf(y / )’ a } = Wﬁzl{t ( )54{f(y), T}, a},
(18)

where R(v) > -1 and the integrals involved converge absolutely.
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Proof. We set
g(u) = uvaU(aqu), (19)

in the relation (12) of Lemma 2.1, using the relationship (11) and the
formula ([5], p. 146, Entry (29)), we get

1% ]- v
Palu™d, (a®u®); v} = 5 y7K, (a%y?). (20)

Using the relation (4) and the formula ([5], p. 185, (30)), we have

2v —4v-4
2v 2 2v. 4 _ 1 Al v/2 2.1/2). .4l _ a” «x
Ly{ue,(a“u®); x} = 1 [,{u Jv(a u ), x }— e —ea4/4x4 . (21

Substituting (19), (20), and (21) into (12), we obtain the assertion (17).
Identity (18) follows upon changing the variable of the integration on the

right-hand side of (17) from x to ¢, where x = 1/«/§t and using the
relation (16) of Lemma 2.3.

Remark 2.5. Setting v = % and v = —% into (17), we obtain
2.2 2 poo 47,4
£af f)e s 2f = 2 [ Tt e 1) (et 4 ) av, @2
nJo

and
54{y‘2f(y)e‘“2y2; } - % | :xe‘“4/4x4£4{f(y); (x* + 2/ Jax, (23)

where each of the integrals converge absolutely.

Remark 2.6. Setting x =1/ V2t on the right-hand side of (22) and
(23), we obtain

2 4_44\1/4
£4{e_azy2f(y); 2} = %M% £4{f(y); %}; a}, (24)
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and
4_4+\1/4
£4{y‘26‘“2y2f(y); 2} = %54{%6 E4{f(y); %}; a}. (25)

Remark 2.7. Substituting z =0 in (24) and (25), then using the

definition of the Lq -transform, we find

L215%1(y); @ = @@{i £af ) 2= a} (26)
ol =Tl At
gl 2 1L L

Lalf ()i a} = 2 £4{t6 £af ) = a}. @7

Example 2.8. Suppose -1 < R(v) < 1, then we have
K {y‘l/ 277", a2} a2 (E)K /Q(ﬁ} (28)

! 22 2 R
Proof. We set

fly) = 5720, (29)

in the relation (18) of Theorem 2.4. Using the relation (4), we get

1 v-1

_ 1+ 4tz s 3 (1-v\[(z)" 2 1 )2
£4]y 20, a2l g 31“(—) (—) [t4 +— 17, ®o
4{y Jat 2 )\t 4z* G0

where R(v) < 1. Substituting (29) and (30) into (18), we obtain

v-1
4 2 2v+1 _ 5
Ku{efz Y ;a2} =2 F(l—ujz2“72£4 i P ;ap. (31)
2—V+2 2 424

Using the relation (4) once again and the formula ([5], p. 138, Entry (13)),
we evaluate the £,-transform on the right-hand side of (31):

v-1
_ 1 )2 1 v+1 a’
L4482 2(# +—j calb = r( )K (—] (32)
4{ 4z4 Vr4a(2a22%) 2 v/ 8xt
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where R(v) > —1. Now the assertion (28) follows upon substituting (32)
into (31) and using the identity

F(IEVJF(I_TU) = T sec (%) (33)

Lemma 2.9. The following identity holds true:

Calte) i ) = 5 [ ot e o
0 2x

provided that the integrals involved converge absolutely.

Proof. By the definition (2) and the relation (4), we find
© 2,2 ® g 44
Lo{Ly{f(x); uf; y} = J. ue Y I x%e Y f(x)dx |du. (35)
0 0

Changing the order of integration, which is permisible by absolute

converge of the integrals involved, we obtain
o o 4.4 232
e I I
0 0

4u2+9’

- J‘wx?’f(x)e;%"‘ooue_x ( 2xt j2dudx. (36)
0 0

In the inner integral on the right-hand side of (36), making the change of

variable

2| .2 2

t=x (u +y—4J (37)
2x

and using the definition of complementary error function (9), we get the

assertion (34).

Example 2.10. We show

2
0 2 2 4
lcos x? e2x2erfc 2 dx = 2@3/2 2y4 +3)eY erfc yz +4y4. (38)
x 2
0 2x
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Proof. If we set
2
) = <) (39)
x

in (34) of Lemma 2.9, we get

2 0 2 2
£2{£4{m2x); u}; y} = %J.o x%eﬁ/“%r}‘c(zﬁj]dﬂc. (40)

X

Using the relation (4) and the known formulas ([5], p. 129, Entry (6);
p. 146, Entry (21)], we obtain

2 4
. cos(2x ); Ul «/;2 o1/t (41)
X 4u
4 4
c, {%e—l/éw ; y} = oy (2yt 4 8)e? erfe(y?) + 4yt (42)
u

Substituting the result (42) into (40), we deduce the assertion (38).

Lemma 2.11. The following identity holds true:

LytLoif(x); uf; v} = ﬁj:xf(x)dx

ﬁ i x%(%)eﬁerfc(

-— de, (43)
8y~ 70

9322
provided that each member of the assertion (43) exits.

Proof. By the definitions (2) and (3) of the Lg-transform and the
L4-transform, we have
La{Lsf(x); uls 3} = |

Oou3€_y4u4 U ooxe_u2x2 f(x)dx} du. (44)
0 0

Changing the order of integration, which is permisible by absolute

converge of the integrals involved, it follows from (44),
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0 © 4 2.2
L4{Lo{f(x); u}; ¥} =j xf(x)U Wyl Ut du}dx. (45)
0 0
Substituting
2 4
—y4u4—u2x2=—y4[u2+i4J +x47 (46)
2y 4y

in the inner integral on the right-hand side of (45), we get

_y4(u2+L

2
Lalalfe)s uh v} = [ “are)e 4 [ Tute 57 afae (47

Setting

20 .2 x2
2y

on the right-handside of (47), we obtain the following relation:
c ” xt /4y
Lo{Lo F): ufs ) = [ af)e

4 4 2 2
x {% e X /A % x_6 erfc (%ﬂ dx. (49)
4y y 2y
Changing the variable on the left-hand side from x to ¢ according to the

transformation x = %, we obtain the assertion (43).

Example 2.12. We show

2
dx = —2 . (50)
2x2y2J 2(2y2 +1)

J‘wx5e1/x4(11/4y4)erfc(

0

Proof. If we set

flx) = e, (51)
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in the formula (43) of Lemma 2.11, we get

9522

© o —_1(1_4]
£4{£2{6_x4; u}; y} - xe_x4dx - ﬁ x_5€x4 ayt erfc (Ljdx
(52)

Using the relationship (4) and the well-known formula ([5], p. 177, Entry
(10)), the Laplace transforms on the left-hand side of (52) are given by

2
E{efx?d; u2} = ge”4/4erfc (%], (53)
-2
E{eu/4erfc (g} y4} S T (54)
y2+ 9

where R(u) > 0, R(y) > 0. Substituting (53) and (54) into (52), we obtain
(50).

Lemma 2.13. The following identity holds true:
4.4
Lolfe? e W H G - 2); )= 7 Lyt @) ), (55)
where H(x)) is the Heaviside function.

Proof. Using the definition (3) of the £,-transform and the Heaviside

function, we get
E4{f(x4 - 2)iH(x - 2); y} = 9_24y4_[ x?’f((x4 - 24)%)6_(964—24 1 g
0

(56)
The assertion (55) follows from changing the variable of integration to
u=(x*-z* )1/4 on the right-hand side of (56), and using the definition

(3) of the L,-transform once again.
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Theorem 2.14. The following Parseval-type relationship holds true:

[ "o eatpeen spax = 2o ()] "L ax, 67

4 0 %V~

provided that the R(v)> -1 and the integrals involved converge

absolutely.

Proof. Using the definition (3) of the £,-transform, we get

J:y”£4{f(X); yidy = I:y“U:x‘ge’“4y4f(x)dx}dy- (58)

Changing the order of integration, which is permissible under the

assumptions of the theorem, we have
Jo vt sty = [t [Ty arlas oo

Now, using the relationship (4) and evaluating the inner integral in (59)

the assertion (57) is obtained.

Corollary 2.15. The following identities hold true, if the integrals

involved converge absolutely:

_[Owy“£4{g(x); (24 + " fay = %F(V i 1)64{g(x) - z}, (60)

Iqu(u4 -zt )(U_3)/4£4 {g(x); ufdu = ir(v_ﬂ)&l{%x). 2}. (61)
z x
Proof. We substitute

) = e g(x), 62)

into (57) and then utilize the following identity, which is obtained by
using the definition (3) of the £4-transform:
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Lofe ™ g0 v} = Lol 2t + 51}

(63)

Thus (60) is obtained. The assertion (61) follows upon changing the

variable of the integration in (60) to u* = z* + y*.

Corollary 2.16. Under the assumptions of Theorem 2.14, we have

Lyly'PLylglx); o) 2} = %F (U Z 1)L°° g((x4x_v_2: )1/4)dx- (64)

Proof. Substituting

flx) = glx® - 24 H(x - 2),

into (57) of Theorem 2.14, we get

j.wy“£4{f(x); yidy = Jwy”ﬁ4{g(x4 — 2 H(x - 2); y}dy.
0 0

Then, utilizing the identity (55) of Lemma 2.13, we have

I: Y L4{f(x); yidy = %F (U Z 1)[; g((x4 —2! )1/4)dx-

xl/72

(65)

(66)

(67)

Using the identity (55) of Lemma 2.13 and the definition (3) of the

L4-transform, we obtain (64).

Remark 2.17. If we change the variable of the integration in (64) to

ut = x* - z*, we obtain the identity

Lyly 2 Lylg(x); v} 2} = %r (" Z 1)J’ ©  uPg(u)du

If we set v = 3 in (64), we find the known relation (11).

Example 2.18. The following identities hold true:

[ o) (252

0 xU—2

0 (u4 e )(1/+1)/4 ’

(63)

(69)
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where -1 < R(v) < 3 and

[ - i (el 55,

0 xU*2 8

where -1 < R(v) < 7.
Proof. We set
f(x) = cos (a®x*), (71)

in the identity (57) of Theorem 2.14. Using the relationship (4) and the
formula ([5], p. 154, Entry (43)), then we obtain

4

Ly{cos(a®c*); y} = 4y—8‘ (72)

4(a” +y°)

Substituting (71) and (72) into (57), we find

) 2.4 0 v+4
j cos (a 2x )dx _ 1 J‘ i/ . dy. (73)

0 xU— 1_, (U + 1) 0 a™ + y

4

We utilize the integral representation for the gamma function ([7], p. 7)

» 1* o T(a+1r@-o R o
J.o (1 +¢)+P dt rg+1) (R(B) > R(a) > -1), (74

and the well known identity
I'(z)F(1 - z) = ncos (nz), (75)

to evaluate the integral on the right- hand side of (73). Using some

results on trigonometric functions, we get (69). We obtain (70) in a

similar fashion by substituting f(x) = sin (ax*) into identity (57).

Theorem 2.19. The following identities hold true:

I:xf(x)erfc(32x2 Ydx = % LOO yL 4 {f(x); yidy, (76)
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jwyﬁ4{f(x); yidy = %ijf(x)dx, (77)
0 0

I:xf(x)erf(s‘gx‘? )dx = I:xf(x)dx - % J.:o yL,{f(x); yidy, (78)

provided that each of the integrals involved converges absolutely.
Proof. Using the definition (3) of the £ -transform, we get
I yL4{f(x); yidy = j UO yxde Y f(x)dx}dy. (79)
S S

Changing the order of integration, which is permissible under the
hypothesis of the theorem, the last equation can be written as

LOO yL{f(x); yidy = Iowaf(x) “:O ye—x4y4 dy} dx. (80)

Changing the variable of the inner integration on the right-hand side of
(82) from y to ¢, where ¢ = y2x2 and using definition (9) of the
complementary error function, we find that the inner integral on the
right-hand side takes the value

Iwye_x4y4 dy = % I: xf (x )erfe(s%x? )dx. (81)

S

Substituting (81) into (82), we obtain the assertion (76). The identity (77)
easily follows when we set s = 0 in (76) and use the fact that erfe(0) = 1.

Using definition (8) of the error function and the identity erf(x) + erfc(x) = 1,

we obtain the assertion (78).
3. Examples

Example 3.1. We have

* _a%xt 2. 2 1 T 32
xe erfe(s”x” )dx = — —arctan — |, (82)
J, (a)de = T {2 a

where R(a) > 0.
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2. 4
Proof. If we set f(x) =e ** in (76) of Theorem 2.19 and use the

relation,

2.4
/34{6_0‘ * ;y} =l—4 1 5 (83)
4yt 4a

we obtain the assertion (82).

Remark 3.2. Setting s = 0 and x? =y in (82), we obtain the well-

known result

© 9.9
J' R (84)
0 2a
If s > 0, then we have
arctan (g) =T _arctan (i) (85)
s 2 a

Using the relations (83) and (85), we obtain

© ekt 2 9 1 ( a j
xe erfe(s“x”)dx = arctan | — |. 86
Jo e = 2 0

S

Setting s =1 and x? =y in (86) gives the following well-known formula
([7], p. 649, 6.285 (1)):

o _ 24
I e " erfe(u)du = a 7712 arctan (a). (87)
0
Example 3.3. We have

2 2.4
J x3e™ % erf (s%x?)dx = %32(34 +a? )_1/2, (88)
0 4a

where R(a? +s*) > 0.
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2 4
Proof. If we set f(x)=x%e %" in the relation (78) and use the

formula ([8], p. 144, Entry 5(3)), we obtain

0 9 4 0
J x3e™ % orf (s%x?)dx = LT ydy (89)
0

402 2Js (y4 +a2)3/2 ’
The integral on the right-hand side of (89) may be evaluated by setting
v = y2 and then changing the variable of the integration from v to u,

where v = a tan u, we get

0 ydy 1 n/2
= cos udu. 90
J.O (y4 +a? )3/2 2a2 arctan(sz/a) (80)

Using the known relation

X

sin(arctan x) = —————, 91)
(1 + x2 )1/2
and setting the expression (90) into (89), we obtain the assertion (88).
Example 3.4. We show for R(v) > -1
% il 2 9
I g (aPx? et erfe| L |dx = 2= a" YK (a%y),  (92)
0 4x° Jr

where J, and K, are the Bessel functions.

Proof. Setting f(x) = x2J,(a%x?) in the identity (34) of Lemma 2.9,

we get
0 2
LotLatf@): uls v} = 22 x””%(azxz)ey4/4x4erfc(y—2jdx. ©9)
4 Jo 4x

Using the relation (4) and the known identities ([5], p. 185, Entry (30);
p. 146, Entry (29)), we have for R(v) > -1, R(u) > 0, R(y) > 0,

2v 4 4
Ly{x® T, (a®c?); u} = ;}ﬁew [y~ 40s1), (94)
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and for R(a) > 0, R(y) > 0,
v+l
£2{u—4(v+1)e—a4/4u4; y} - (%) yv+1KU((Z2y). (95)

Substituting (94) and (95) into (93), we obtain the assertion (92).

Example 3.5. We have

v-1

Iwyvea4y4erfc(a2y2 )dy = ¢ r (V : 1) csc [n(y i 3)}, (96)
0 4 4 4

where -3 < R(v) < 1.

Proof. We set f(x) = x 2(x* + a*)™! in the identity (57) of Theorem

2.14. Using the relationship (4) and the formulas ([9], p. 16, Entry (3)),
([2], p- 399, formula (17)), ([6], p. 216, Entry (5)), we get

0 2
Jo y“ea4y4erfc (a®y?)dy = a7 r (U :; 1) Palx™ 3 al, 97)

where

Palx 3 a) = %aﬂ’f?’ csc [n(u Z 3)} (98)

Substituting (98) into (97), we obtain the assertion (96).

Example 3.6. We have

J' C’Ox(u—S)/ze—oﬂx2 dx = 1 o v-D/2 (V_H), (99)
0 2 4

where R(v) > 1, R(a) > 0.
2
Proof. We set f(x)=x"2e™® /4t in the identity (57) of Theorem

2.14. Using the relation (4) and setting z = (v —1)/4 in the formula for

the I' function
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I'(2z) 2! I( )r( 1) (100)
= + =1,
2 N 2 z 5
we get
- w12 o
J. x_Ue_a2/4x4dx = 2_2(2) F(U 1). (101)
0 a 4

The assertion (99) follows, when we change the variable of the

integration on the left- hand side of (101) to u =1/ 2x2.

Remark 3.7. If we put v =3 in (99), we obtain the well-known
formula (84). If we put p = (v —3)/2 in (99), we deduce

Lofa" y) = %y‘(“”) F(—“ > 1), (102)

where R(u) > 1.

Remark 3.8. We show

oo v 8 , 47v-3)/8 3 2
j 1 3; 5 2 dy = n[z” +a”] T sin {3 3 Y arctan [%ﬂ,
0 (" +2") +a 4a? sin (n(u :; D z

(103)

where —1 < R(u) < 3.

Proof. Setting g(x) = sin (a®x*) in the identity (60) of Corollary
2.15 and using the relation (4), the formula ([5], p. 152, Entry (15)) and

the relation
v+1 3-v v+1
(2 (32) = mese[ 221 aos

we obtain the assertion (103).
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Example 3.9. We have

(105)

© erf(a®x?) .- JraV 3
s 5 o s

where 3 < R(v) < 5.

Proof. Setting f(x) = erf(a®x*) in the identity (57) of Theorem 2.14

and using the relation (4), the formula ([5], p. 176, Entry (4)), the relation
(75), respectively, we obtain the assertion (105).

Example 3.10. We have

(222] 4
* y¥ 7a(y4+24)1/2 _\ 9 (V+1) 2
e dy = r K._,(az”), (106)
Jo gl T i
and
9 v-1
4 4 au2 1 2z 4 (U‘f’lj 2
uu®-z")4 e du = = r K, _,(az®), (107
[ utwt -2 5 G[ : j T JKiu(es®), aon

where -1 < R(v) < 1.

244
Proof. We set g(x) = x 2¢% /%" into the identity (60) of Corollary
2.15. Using the formulas (4), ([5], p. 146, Entries (27) and (29)), we obtain

\/;e_a(y4+z4 )1/2

-2 —a?/4axt. 4 | _4N1/4
£4{x eatlaxt (4, )/} gl (108)
2 (U*l)/4
£4{x7”73e7‘12/4x4; 2} = l(ZLJ K., (az?), (109)
2 a =

respectively. Now, the assertion (106) follows when we substitute the
results (108) and (109) into (60) of Corollary 2.15. Similarly, when we

2.4
substitute the results (108), (109), and g(x) = x 2@ 1427 into (61) of
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Corallary 2.15 and we use the formula ([5], p. 146, Entry (27)), the
assertion (107) is obtained. Remark 3.11. If we put p=(1-v)/4 in

(106), we deduce

2vn (ﬁju

where R(n) <1/2, -1 < R(v) < 1.

K,(az?) = J : R L G R M T\

Setting az? = x and changing the variable of integration on the right
of (110) to t = yz, we obtain the following integral representation for the

modified Bessel function of the second kind K, (x):

K,(x) = _ 2 (zjujwtl“‘“(t‘* 1) 2e ) gy (111)
1 X 0
r(3-4)
2
where R(n) <1/2.

Similarly, we deduce another integral representation for the function
K, (x) from the result (107) of Example 3.10:

U eo0
K, (x)= _dr (2 t(tt - 1)_“_1/26_xt2dt, (112)
ol
2 u
where R(u) < 1/2. Changing the variable of integration on the right-

hand side of (112) to w = tz, we get the well known formula:

K_,(x) = K,(x) = ﬁ(%)uj‘l@(wz - 1)“_1/2e_xwdw, (113)
2

where R(u) > -1/ 2.
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We conclude this investigation by remarking that many other infinite

integrals can be evaluated in this manner by applying the above

theorems and lemmas.
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