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Abstract 

Feature selection of input features is the key issue for pattern recognition-based transient 
stability assessment (TSA) methods. Considering the possible real-time information 
provided by phasor measurement units, a group of system-level classification features are 
firstly extracted from the power system operation condition to construct the original feature 
set. Then kernelized fuzzy rough sets (KFRS) are used to select the near-optimal feature 
subset, and Gaussian process is finally employed to test the classification ability of the 
selected features. The effectiveness of the proposed method is validated by the simulation 
results on the New England 39-bus test system. 

Keywords: transient stability assessment, feature selection, fuzzy rough 
sets, Gaussian process, phasor measurement unit. 
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1. Introduction 

TSA has been recognized as an important task to ensure the secure 
and economical operation of power systems [1]. With the rapid 
development of computational intelligence, recent research shows that 
pattern recognition-based TSA (PRTSA) methods are promising for 
online TSA of power systems [2]-[7]. One of the most important 
considerations in PRTSA is the proper selection of training features [8]. 
It is well-known that the excessive input features will increase the costs 
of knowledge discovery, reduce the accuracy of training models and even 
lead to the well-known “curse of dimensionality” problem. Meanwhile, 
high dimension of power system is an important problem in both theory 
research and engineering practice. Therefore, the feature selection of 
input features for TSA has very important theoretical and practical 
significance. 

However, large amounts of published research work on is devoted to 
classifiers design, and there is relatively less attention given the issue up 
to now. Reference [8] uses Fisher’s linear discriminant function to select 
neural network training features for power system security assessment. 
A separability index as criterion is defined through finding the 
“inconsistent cases” in a sample set, and the breadth-first searching 
technique is employed to find the minimal or optimal subsets of the 
initial feature set in [9]. Reference [10] proposes an artificial neural 
network-based TSA method to predict the stability status of the power 
system, and uses two feature selection techniques to identify the input 
variables best suitable for training. Recent research shows that rough set 
(RS) methods are effective ways for feature selection [11]. But when 
processing numeric data, the discrete process of RS will inevitably leads 
to information loss, which greatly limits the application of RS for TSA 
[12]. 
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KFRS is a new algorithm in dealing with uncertainty in data 
analysis, which combines the advantages of kernel methods and rough 
sets [13]. Gaussian process (GP) is a Bayesian probabilistic kernel 
machine [14], [15], which is widely used for the high-dimensional 
nonlinear classification and regression problems [16], [17]. 

In recent years, the advent of wide area measurement system 
(WAMS) using time-stamped phasor measurement units (PMUs) makes 
it possible to explore wide area protection and control schemes to avoid 
the system collapse [18]-[20]. Meanwhile, WAMS provides new rich data 
source for the input features of PRTSA. 

Considering the possible real-time information provided by PMUs, a 
new feature selection method for GP-based TSA of power systems using 
KFRS is presented in this paper. The proposed method can overcome the 
information loss problem of the discrete process, when processing 
numeric data by using RS. 

The remainder of this paper is organized as follows. First the KFRS 
theory is introduced in brief. Details of the proposed feature evaluation 
and selection method using KFRS are presented next. Then, GP is used 
to construct a TSA model to validate the selected features. Application of 
the proposed method is demonstrated by using the New England 39-bus 
test system, and finally the conclusions are made. 

2. Brief Introduction to KFRS 

Given a classification task ,,, >< DAU  where { }nxxxU ,,, 21 …=  

is a set of samples described by attribute set { } DaaaA N ,,,, 21 …=  is 

the decision attribute, which divides the set of samples into subsets 
.,,, 21 mddd "  

Given arbitrary subset of attributes AB ⊆  and ,∅≠B  we can 

generate a fuzzy T-equivalence relation R over U, where ,,, Uzyx ∈∀  
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( ) ( ) ( ),,,;1, xyRyxRxxR ==  and ( ) ( )( ) ( ).,,,, zxRzyRyxRT ≤  The 

fuzzy information granules induced by relation R and ,ix  denoted by 

( ),iR xFIG  is defined as 

( ) ,2211 nnijjiiiiR xrxrxrxrxFIG +++++= ""   (1) 

where jir  is the similarity degree of samples ix  and .jx  As to classical 

classification, we are confronted a task of approximating decision classes 
with these fuzzy information granules. According to the definitions of 
lower and upper approximations, the memberships of sample x to lower 
and upper approximations of decision class kd  are computed as 
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where ( )xdRS k  and ( )xdR kθ  are the degrees of certainty of sample x 

belonging to decision ,kd  whilst ( )xdRT k  and ( )xdR kσ  are the degrees of 

possibility of sample x belonging to decision .kd  

Before computing ( ) ( ) ( ),,, xdRxdRxdR TS kkk θ  and ( ),xdR kσ  we 

should introduce an algorithm to obtain fuzzy T-equivalence relations 
between samples. In Theorem 2.1, Moser showed that part of kernel 
functions can be introduced to get fuzzy T-equivalence relations. 

Give a nonempty and finite set U, a real-valued function 
RUU →×:k  is said to be a kernel if it is symmetric, that is, ( ) =yx,k  

( )xy,k  for all ,, Uyx ∈∀  and positive-semidefinite. 
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Theorem 2.1 ([21]). Any kernel [ ]1,0: →×UUk  with ( ) 1, =xxk  is   

(at least) ,-cos transitiveT  where ( ) ( ).0,11max, 22
cos baabbaT −−−=  

Obviously, the relations computed with Gaussian kernel 

( ) ( )
δ
−

−=
2

exp, yxyxG  (4) 

are fuzzy transitive-cosT  relations, where δ  is the width of the Gaussian. 

Then the formulae for computing the memberships of lower and 
upper approximations can be obtained. 

( ) ( )( ),,1inf yxGxdR
idyiS −=

∈/
 (5) 

( ) ( ( ) ),,1inf 2 yxGxdR
idyi −=

∈/
θ  (6) 

( ) ( ),,sup yxGxdR
idy

iT
∈

=  (7) 

( ) ( ( )) ,,1sup 2 yxGxdR
idy

i −=
∈

σ  (8) 

( )xdR iS  or ( ),xdR iθ  the membership of sample x to the fuzzy lower 

approximation of ,id  reflects the degree how a sample certainly belongs 

to decision label id  with respect to fuzzy relation R, and ( )xdR iT  or 

( ),xdR iσ  the membership of sample x to the fuzzy upper approximation 

of ,id  gives the degree how a sample possibly belongs to decision label id  

with respect to fuzzy relation R. Clearly, it is expected that each sample 
certainly belongs to its decision class with a great degree. So, the average 
value of the memberships of lower approximation is usually used to 
evaluate features. KFRS is described in detail in [13]. 

 

 



Yang Li and Changjiang Wang / IJAMML 2:2 (2015) 159-175 164

3. Construction of Original Feature Set 

It is an important task for PRTSA to construct effective original 
features. Unfortunately, previous works have mainly focused on the 
analysis of pre-fault static features, as the traditional monitoring 
systems such as SCADA does not provide synchronized measurements for 
wide-area power systems. The bottleneck is break through with the 
advent of WAMS, which provide rich data sources by the availability of 
real-time synchronized measurements. Therefore, this paper focuses on 
applications of the real-time information obtained from PMUs to 
construct original features. 

After having studied the comprehensive existing literature and 
having carried out a lot of the simulation analysis, a group of system-
level classification features independent of the scale of power systems 
were initially selected as the original features. These feathers are listed 
in Table 1, where 1ct  denotes the fault clearing time, ,61,31 cccc tt ++  and 

,91 cct +  respectively, denote the 3rd cycle, 6th and 9th after the fault 

clearing time. 
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Table 1. Input features of data set 

No. Input features 

Tz1 Mean value of all the mechanical power before the fault incipient time. 

Tz2 Mean value of all the initial rotor acceleration rates. 

Tz3 Mean square error of all the initial acceleration rates. 

Tz4 Maximum value of all the initial active power impact. 

Tz5 Minimum value of all the initial active power impact. 

Tz6 Mean value of all the initial acceleration power. 

Tz7 Maximum value of all the initial rotor kinetic energies. 

Tz8 Maximum value of the difference of initial acceleration rates. 

Tz9 Maximum value of the difference of initial rotor kinetic energies. 

Tz10 Maximum value of the difference of initial rotor angle. 

Tz11 Initial rotor angle of the machine with the maximum acceleration rate. 

Tz12 Maximum value of all the initial rotor acceleration rates. 

Tz13 Minimum value of all the initial rotor acceleration rates. 

Tz14 Total system ‘energy adjustment’. 

Tz15 Value of system impact at .1ct  

Tz16 Maximum value of the difference of acceleration rates at .1ct  

Tz17 Maximum value of the difference of rotor kinetic energies at .1ct  

Tz18 Maximum value of the difference of rotor angle at .1ct  

Tz19 Mean value of all the rotor kinetic energies at .1ct  

Tz20 Rotor angle of the machine with the maximum kinetic energy at .1ct  

Tz21 Kinetic energy of the machine with the maximum rotor angle at .1ct  

Tz22 Maximum value of all the rotor kinetic energies at .1ct  

Tz23 Maximum value of all the rotor kinetic energies at .31 cct +  

Tz24 Maximum value of all the rotor kinetic energies at .61 cct +  

Tz25 Maximum value of all the rotor kinetic energies at .91 cct +  
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Table 1. (Continued) 

Tz26 Kinetic energy of the machine with the maximum rotor angle at .31 cct +  

Tz27 Kinetic energy of the machine with the maximum rotor angle at .61 cct +  

Tz28 Kinetic energy of the machine with the maximum rotor angle at .91 cct +  

Tz29 Maximum value of the difference of all rotor angles at .31 cct +  

Tz30 Maximum value of the difference of all rotor angles at .61 cct +  

Tz31 Maximum value of the difference of all rotor angles at .91 cct +  

4. KFRS-Based Feature Selection 

4.1. Generation of sample set 

In this paper, data required for training and testing the classifier 
were generated offline through the T-D simulations. The simulation was 
done based on the classical machine model and the constant impedance 
load model. A successful reclosure of the faulted line was applied after 
fault clearance, and no topology changes result from the fault. 

A total of 500 simulation cases at 20 different fault locations were 
generated at 5 different loading levels (under 80, 90, 100, 110, and 120% 
of the base load). Corresponding to each loading level, 5 kinds of active 
and reactive load powers were randomly set. The contingencies 
considered were three-phase short-circuit faults. A standard clearing 
time of five cycles was assumed for all the contingencies. 352 out of 500 
generated operating points are randomly sampled as the training data 
set, and the remaining as the testing data set. A class label was assigned 
to denote the transient unstable and stable status of a simulation case 
following a contingency. This class label is calculated according to 
maximum relative rotor angle deviation during the transient period. If 
the maximum relative rotor angle deviation exceeds 360 degree [6], the 
system is considered as unstable and the class label is marked as “−1”, 
otherwise the class label is marked as “+1”. 
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4.2. Data pre-processing 

In this paper, z-score standardization method is used as the data pre-
processing method. 

( ) ,DDdd σ−=′   (9) 

where D  and Dσ  are, respectively, the mean and standard deviation of 
any feature D in sample data. d′  is the normalized value of ., Ddd ∈  

4.3. Feature selection algorithm 

Given ABDAU ⊆,,,  and R is a fuzzy relation between samples 
induced by attributes B. Then the dependency of D on B is defined as 
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Dependency is the average value of the memberships of each sample 
to the lower approximation. This coefficient reflects the approximating 

ability of attribute subset B to characterize the decision. ( ) 1=γ DS
B  if for 

( ) ,1, =∈∀ xdRUx S  where { }.,,, 21 mdddd "∈  That is to say, all the 

samples consistently belong to one of the decision classes without any 
uncertainty. Obviously, B is a good subset of attributes for discerning 
different decision classes in this case. 

There is a good property with the dependency function. It is 

monotonous with the attributes. That is to say, ( ) ( )DD S
B

S
B 21

γ≤γ  and 

( ) ( )DD BB
θθ γ≤γ

21
 if .21 BB ⊆  Moreover, ( ) 10 ≤γ≤ DS

B  and ( ) .10 ≤γ≤ θ DB  

So we can begin with the best feature, and then add features one by one 
until the dependency does not increase by adding any new feature. 
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With this measure, a forward algorithm for feature selection is 
constructed as follows: 

Algorithm. Feature selection based on fuzzy rough sets. 

Input: DAU ,,  and a similarity function K. 

Output: Feature subset F 

(1) ;F→∅  

(2) while ∅≠− FA  do 

(3)       for each FAi −∈α  

(4)               compute ( )DiF αγ ∪  

(5)      end 

(6)      select FA −∈α  subject to 

( ) ( )DD iFiF αα γ=γ ∪∪ max  

(7)      if ( ) ( ) ε≤γ−γ α DD FF ∪  

(8)               Break while 

(9)     end 

(10)   FF →α∪  

(11) end 

(12) return F. 

In this work, Gaussian function is used to compute the similarity 
between samples. In addition, the parameter ε  is set to 0.01 to stop the 
search in this algorithm. 

In this algorithm, given a set of features, we can compute the 
similarity relations between samples. Then we can obtain the 
memberships of samples to the fuzzy lower approximation. 
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4.4. Gaussian process 

In this section, the Gaussian process model for binary classification 
(GPC) is briefly described. Given data points ix  from a domain χ  with 

corresponding class labels { },1,1 +−∈iy  one would like to predict the 

class membership probability for a test point .∗x  This is achieved by 

using a latent function f whose value is mapped into the unit interval by 
means of a sigmoid function [ ]1,0:sig →R  such that the class 

membership probability ( )x1+=yp  can be written as ( )( ).sig xf  The 

class membership probability must normalize ( ) ,1=∑ xypy  which leads 

to ( ) ( ).111 xx −=−=+= ypyp  If the sigmoid function satisfies the 

point symmetry condition ( ) ( ),sig1sig tt −−=  the likelihood can be 

compactly written as 

( ) ( )( ).sig xx fyyp ⋅=  

Given the latent function f, the class labels are assumed to be 
Bernoulli distributed and independent random variables, which gives 
rise to a factorial likelihood, factorizing over data points. 

( ) ( ) ( ).sig
1

ii

n

i
fypfp ∏

=

== fyy  (11) 

The prior distribution of the latent function is 

( ) ( ),,, 0 KmfXf Np =θ   (12) 

where ,,0 Km  and θ  are, respectively, mean vector, covariance matrix, 

and hyperparameter vector. For notational convenience, we will assume 
( ) 0≡xm  throughout. Thus, the elements of K are ( ),,, θ= jiij xxkK  

where ., χ∈ji xx   
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By application of Bayes’ rule, one gets an expression for the posterior 
distribution over the latent values f 

( ) ( )
( ) ( ).sig,

,,,
1

ii

n

i
fyp

Np ∏
=

θ
=θ Xy

K0fXyf  (13) 

When making predictions, we marginalize over the training set latent 
variables 

( ) ( ) ( ) .,,,,,,,, dfppp θθ=θ ∗∗∗∗ ∫ XyfXXffXyXf   (14) 

Finally, the predictive class membership probability ∗p  is obtained 

by averaging out the test set latent variables 

( ) ( ) ( ) .,,,sig,,, ∗∗∗∗∗∗∗ θ=θ ∫ dffpfyyp XyxXyx   (15) 

A covariance function is the crucial ingredient affecting the 
performance of GPC. Among the common covariance functions are the 
squared exponential covariance function, rational quadratic covariance 
function and the lexponentia-γ  covariance function. The covariance 

function used in this paper is the squared exponential covariance 
function: 

( ) (
( )

),
2

exp, 2

2
2

l
ji

fjiSEISO

xx
xx

−
−σ=k  (16) 

where 2
fσ  and l are all hyperparameters. 

5. Case Study 

In order to evaluate the performance of the proposed method, the 
IEEE 39-bus test system (New England) was used. This system is a well-
known test case for TSA studies reported in previous works [5], [6]. The 
one diagram of the test system is shown in Figure 1. 
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Figure 1. New England 39-bus test system. 

All of the programs in this paper are implemented in MATLAB 
running on a PC with Microsoft Windows Server 2003 operating system, 
Intel Pentium dual CPU E2200 @ 2.20GHz, 2.19GHz and main memory 
1GB. 

5.1. Test results of the proposed method 

In order to compare the proposed KFRS-based feature selection 
method with other algorithms, fast correlation based feature search 
(FCBF) [22] is introduced and tested. FCBF is a famous feature selection 
technique in classification analysis, where symmetric uncertainty 
measure was used to evaluate quality of features and a fast search 
algorithm was developed for high-dimensional data analysis. 
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The proposed feature selection method returned the feature subset 
{ },31Tz,19Tz,3Tz,23Tz,6Tz,1Tz,29TzA1 =  and FCBF returned the 

subset of feature { }.19Tz,11Tz,23Tz,25Tz,10Tz,6Tz,28Tz,1Tz,4TzA2 =  

Then, comparison tests were carried out between the original feature set 
,A,A 1  and 2A  by using GPC-based TSA models. The test results are 

shown in Table 2. 

Table 2. Test result of GPC models 

Hyperparameter 
Feature set Dimension 

fσ  l Test accuracy/% 

A 31 2.38 5.24 96.62 

1A  7 1.03 3.92 98.65 

2A  9 1.56 4.69 95.95 

As is shown in Table 2, compared with the original feature set 1A,A  

has similar classification accuracy, but the data dimension is reduced to 
.4/1  At the same time, it can be seen that although KFRS-based 

algorithm selects the less features than FCBF, its classification 
performance is better than the latter. 

5.2. Test results of other TSA models 

In order to examine the versatility of the proposed feature selection 
method, the feature sets A and 1A  were used as the input of other TSA 

models such as DT, multi-layer perception (MLP) and SVM. The 
parameters of the models were set as follows: DT was constructed using 
the C4.5 algorithm with default configuration (pruning with 0.25 
confidence factor); MLP adopted back-propagation (BP) algorithm as the 
training algorithm and the learning rate was set to 0.8; the kernel 
function of SVM used in this paper was RBF kernel and the associated 
parameters were optimized through a grid search during the 4-fold cross-
validation process [6]. The test results are shown in Table 3. 
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Table 3. Test results of other models 

Feature set TSA model Test accuracy/% 

DT 94.59 

MLP 95.27 A 

SVM 95.95 

DT 96.62 

MLP 94.59 1A  

SVM 97.30 

From Table 3, it can be observed that when using feature subsets 
,A1  all other TSA models have the similar classification performances to 

the original feature set A. This indicates that the proposed KFRS-based 
feature selection methods can be used for other TSA models, such as DT, 
MLP, and SVM. 

6. Conclusions 

Considering the possible real-time information provided by PMUs, a 
new method for transient stability assessment of power systems using 
KFRS and GPC is presented in this paper. The proposed method has 
been examined on the New England 39-bus test system, and the 
following conclusions can be drawn from the work: 

(1) Without sacrificing classification performance of the original 
feature set, the proposed KFRS-based feature selection method can 
significantly reduce the data dimension, and has better performance than 
FCBF. 

(2) The proposed feature selection method can also be used for other 
TSA models, such as DT, MLP, and SVM. 

(3) The proposed method can effectively evaluate the quality of 
features and find the useful subsets, which may be used as a reference for 
future TSA research. 
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