A REMARK ON THE CONTINUANTS OF TRANSCENDENTAL NUMBERS IN CONTINUED FRACTION EXPANSION

LUMING SHEN and XINQIANG LI

Science College of Hunan Agricultural University
Changsha
Hunan, 410128
P. R. China
e-mail: lum_s@126.com

Abstract

For any irrational $\theta \in[0,1)$, let $q_{n}(\theta)$ be n-th continuant of θ in its continued fraction expansion. Davenport and Roth showed that if θ satisfies $$
\log \log q_{n}>\frac{c n}{\sqrt{\log n}}, \text { for infinitely many } n \in \mathbb{N}
$$ for all $c>0$, then θ must be transcendental. We call a set A purely transcendental set, if all the elements in A are transcendental. In this note, we intend to explain that if a purely transcendental set is determined merely by the properties of the individual continuants, besides algebraic numbers, most transcendental numbers are excluded from this set. Namely, let ϕ be a positive function defined on \mathbb{N} and set $$
A(\phi)=\left\{x \in[0,1): q_{n}(x) \geq \phi(n), \text { infinitely many } n\right\}
$$

If $A(\phi)$ is a purely transcendental set, then the set $A(\phi)$ is of Hausdorff dimension at most one-half.

1. Introduction

Diophantine approximation is intimated connected with continued fractions in the sense that, for any irrational $\theta \in[0,1)$, if

$$
\left|\theta-\frac{p}{q}\right|<\frac{1}{2 q^{2}}
$$

then $\frac{p}{q}$ must be a convergent of θ in its continued fraction expansion.
It seems that the first result concerning the properties of continuants of transcendental number or equivalently algebraic numbers is Liouville inequality [1], which shows that any algebraic number of degree d cannot be approximated by rational numbers at an order greater than d. Using this result, one has

Theorem 1.1 ([1]). Let θ be an irrational and $q_{n}(\theta)$ be the n-th continuants in its continued fraction expansion. If, for any $c>0$,

$$
\begin{equation*}
\log \log q_{n}(\theta) \geq c n, \text { for infinitely many } n \in \mathbb{N} \tag{1.1}
\end{equation*}
$$

then θ is transcendental.
According to an estimation on the number of solutions to the inequality

$$
\begin{equation*}
\left|\xi-\frac{p}{q}\right|<\frac{1}{q^{2+\delta}} \tag{1.2}
\end{equation*}
$$

when ξ is algebraic, Davenport and Roth [2] derived an improvement of (1.1).

Theorem 1.2 ([2]). Let θ be an irrational and $q_{n}(\theta)$ be the n-th continuants in its continued fraction expansion. If, for any $c>0$,

$$
\begin{equation*}
\log \log q_{n} \geq \frac{c n}{\sqrt{\log n}}, \text { for infinitely many } n \in \mathbb{N} \tag{1.3}
\end{equation*}
$$

then θ is transcendental.

An qualitative improvement of the number of solutions to inequality (1.2), which is given by Bombieri and van der Poorten [6], enable Adamczewski and Bugeaud [3] to obtain an improved one.

Theorem 1.3 ([3]). Let θ be an irrational and $q_{n}(\theta)$ be the n-th continuants in its continued fraction expansion. If, for any $c>0$,

$$
\begin{equation*}
\log \log q_{n}>c n^{\frac{2}{3}}(\log n)^{\frac{2}{3}} \log \log n, \text { for infinitely many } n \in \mathbb{N} \tag{1.4}
\end{equation*}
$$

then θ must be transcendental.
We call a set A purely transcendental set, if all the elements in A are transcendental. In this note, we intend to explain that if a purely transcendental set is characterized merely by precise properties of the individual continuants, besides algebraic numbers, most transcendental numbers are also excluded from this set. Namely, let ϕ be a positive function defined on \mathbb{N} and set

$$
A(\phi)=\left\{x \in[0,1): q_{n}(x) \geq \phi(n), \text { infinitely many } n\right\}
$$

We show that
Theorem 1.4. If $A(\phi)$ is a purely transcendental set, then the set $A(\phi)$ is of Hausdorff dimension at most one-half.

2. Preliminaries

We begin with some notations firstly. Let $x \in[0,1)$ be an irrational number and $\left[a_{1}(x), a_{2}(x), \cdots\right]$ be its regular continued fraction expansion. For any $n \geq 1$, denote by

$$
p_{n}(x) / q_{n}(x):=\left[a_{1}(x), a_{2}(x), \cdots, a_{n}(x)\right]
$$

the n-th convergent of x. With the conventions that $p_{-1}(x)=1, q_{-1}(x)=0$, $p_{0}(x)=0, q_{0}(x)=1$, one has [4]

$$
\begin{array}{ll}
p_{n+1}(x)=a_{n+1}(x) p_{n}(x)+p_{n-1}(x), & n \geq 0 \\
q_{n+1}(x)=a_{n+1}(x) q_{n}(x)+q_{n-1}(x), & n \geq 0 \tag{2.1}
\end{array}
$$

where $\left\{q_{n}\right\}_{n \geq 1}$ are commonly called the continuants.
For any $a_{1}, \cdots, a_{n} \in \mathbb{N}$, denote by $I_{n}\left(a_{1}, \cdots, a_{n}\right)$ the n-th cylinder

$$
I_{n}\left(a_{1}, \cdots, a_{n}\right)=\left\{x \in[0,1): a_{1}(x)=a_{1}, \cdots, a_{n}(x)=a_{n}\right\}
$$

Lemma 2.1 ([4]). For any $a_{1}, \cdots, a_{n} \in \mathbb{N}$,

$$
\left|I_{n}\left(a_{1}, \cdots, a_{n}\right)\right|=\frac{1}{q_{n}\left(q_{n}+q_{n-1}\right)}, \quad \prod_{j=1}^{n} a_{j}<q_{n}<\prod_{j=1}^{n}\left(a_{j}+1\right)
$$

where $|\cdot|$ denotes the length of a subset in $[0,1)$ and q_{n}, q_{n-1} are recursively defined by (2.1).

Let φ be a positive function on \mathbb{N}. Set

$$
E(\varphi)=\left\{x \in[0,1): a_{n}(x) \geq \varphi(n), \text { for infinitely many } n\right\}
$$

A complete result on the Hausdorff dimension of $E(\varphi)$ was given in [5], but only the needed part is cited here.

Lemma 2.2 ([5]). Write $b=\exp \left\{\liminf _{n \rightarrow \infty} \frac{\log \log \varphi(n)}{n}\right\}$. If

$$
\liminf _{n \rightarrow \infty} \frac{\log \varphi(n)}{n}=\infty
$$

then $\operatorname{dim}_{H} E(\varphi)=\frac{1}{b+1}$.
Recall that

$$
A(\phi)=\left\{x \in[0,1): q_{n}(x) \geq \phi(n), \text { for infinitely many } n\right\}
$$

Lemma 2.3. If $A(\phi)$ is a purely transcendental set, then

$$
\liminf _{n \rightarrow \infty} \frac{\log \phi(n)}{n}=\infty
$$

Proof. For any integer $B \geq 1$, let $x_{B}=[B, B, \cdots$,$] . Lagrange's$ theorem asserts that x_{B} is quadratic irrational. Whence,

$$
\phi(n) \geq q_{n}\left(x_{B}\right) \geq B^{n} \text {, for } n \text { ultimately. }
$$

3. Proof of Main Result

In this section, we give the exact Hausdorff dimension of the purely transcendental set $A(\phi)$.

Lemma 3.1. If $A(\phi)$ is a purely transcendental set, then $\operatorname{dim}_{H} A(\phi)=\frac{1}{1+b}$, where $b=\exp \left\{\liminf _{n \rightarrow \infty} \frac{\log \log \varphi(n)}{n}\right\}$.

Proof. In the light of Lemma 2.3, the lower bound of $\operatorname{dim}_{H} A(\phi)$ is a direct consequence of Lemma 2.2.

Now we turn to the upper bound. Two cases will be distinguished according as $b=1$ or $b>1$.
(i) $b=1$. For any $t>1$, we introduce a family of measures μ_{t} :

$$
\begin{equation*}
\mu_{t}\left(I_{n}\left(a_{1}, \cdots, a_{n}\right)\right)=e^{-n p(t)-t \sum_{j=1}^{n} \log a_{j}(x)}, \tag{3.1}
\end{equation*}
$$

where $p(t)=\log \sum_{n=1}^{\infty} \frac{1}{n^{t}}$.
Now, let $\mathcal{I}(n)$ be the family of all n-th order cylinders $I\left(a_{1}, \cdots, a_{n}\right)$, which satisfies $q_{n} \geq \phi(n)$. Then,

$$
A(\phi)=\bigcap_{N=1}^{\infty} \bigcup_{n=N}^{\infty} \bigcup_{I_{n}\left(a_{1}, \cdots, a_{n}\right) \in \mathcal{I}(n)} I_{n}\left(a_{1}, \cdots, a_{n}\right)
$$

For each $N \geq 1$, we select all those cylinders in $\bigcup_{n=N}^{\infty} \mathcal{I}(n)$, which are maximal $\left(I \in \bigcup_{n=N}^{\infty} \mathcal{I}(n)\right.$ is maximal if there is no other I^{\prime} in $\bigcup_{n=N}^{\infty} \mathcal{I}(n)$ such that $I \subset I^{\prime}$ and $\left.I \neq I^{\prime}\right)$. We denote by $\mathcal{J}(N)$ the set of all maximal cylinders in $\bigcup_{n=N}^{\infty} \mathcal{I}(n)$. It is evident that $\mathcal{J}(N)$ is a cover of $A(\phi)$ for any $N \geq 1$.

Fix $t>1$ and $\epsilon>0$. Choose N_{0} large enough such that for any $n \geq N_{0}, \epsilon \log \phi(n) \geq n p(t)$.

Fix $N \geq N_{0}$. Then for any $I_{n}\left(a_{1}, \cdots, a_{n}\right) \in \mathcal{J}(N)$, we have

$$
\left|I_{n}\left(a_{1}, \cdots, a_{n}\right)\right|^{\frac{t+\epsilon}{2}} \leq e^{-(t+\epsilon) \log q_{n}} \leq e^{-t \sum_{j=1}^{n} \log a_{j}-n p(t)}=\mu_{t}\left(I_{n}\left(a_{1}, \cdots, a_{n}\right)\right)
$$

So,

$$
\sum_{I_{n}\left(a_{1}, \cdots, a_{n}\right) \in \mathcal{J}(N)}\left|I_{n}\left(a_{1}, \cdots, a_{n}\right)\right| \leq \sum_{I_{n}\left(a_{1}, \cdots, a_{n}\right) \in \mathcal{J}(N)} \mu_{t}\left(I_{n}\left(a_{1}, \cdots, a_{n}\right)\right) \leq 1
$$

This implies $\operatorname{dim} A(\phi) \leq 1 / 2=\frac{1}{b+1}$.
(ii) $b>1$. By the definition of b, one has, for any $\epsilon>0$,

$$
\begin{equation*}
\prod_{j=1}^{n} e^{(b-\epsilon)^{j-1}(b-\epsilon-1)} \leq \phi(n), \text { for } n \text { ultimately } \tag{3.2}
\end{equation*}
$$

So, it follows

$$
A(\phi) \subset\left\{x \in[0,1): a_{n}(x) \geq\left[e^{(b-\epsilon)^{n-1}(b-\epsilon-1)}\right]-1, \text { i.o., } n\right\}
$$

As a consequence of Lemma 2.2, one gets $\operatorname{dim}_{H} A(\phi) \leq \frac{1}{1+b}$.

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No.11361025) and Talent Fund of Hunan Agricultural University (14RCPT03).

References

[1] Y. Bugeaud, Approximation by Algebraic Numbers, Cambridge Tracts Math. 160, Cambridge, 2004.
[2] H. Davenport and K. F. Roth, Rational approximations to algebraic numbers, Mathematika 2 (1955), 160-167.
[3] B. Adamczewski and Y. Bugeaud, On the Maillet-Baker continued fractions, J. Reine Angew. Math. 606 (2007), 105-121.
[4] A. Ya. Khintchine, Continued Fractions, P. Noordhoff, Groningen, The Netherlands, 1963.
[5] B. W. Wang and J. Wu, Hausdorff, dimension of certain sets arising in continued fraction expansions, Adv. Math. 218 (2008), 1319-1339.
[6] E. Bombieri and A. J. van der Poorten, Some quantitative results related to Roth's theorem, J. Austral. Math. Soc. Ser. A 45 (1988), 233-248.

