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Abstract

For any irrational 0 € [0, 1), let g, (0) be n-th continuant of 0 in its continued

fraction expansion. Davenport and Roth showed that if 0 satisfies

loglog q,, > L , for infinitely many n € N,
Jlogn
for all ¢ >0, then 0 must be transcendental. We call a set A purely

transcendental set, if all the elements in A are transcendental. In this note, we
intend to explain that if a purely transcendental set is determined merely by the
properties of the individual continuants, besides algebraic numbers, most

transcendental numbers are excluded from this set. Namely, let ¢ be a positive

function defined on N and set
A(9) = {x €[0,1) : g,(x) > ¢(n), infinitely many n}.

If A(¢) is a purely transcendental set, then the set A(¢p) is of Hausdorff

dimension at most one-half.
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1. Introduction

Diophantine approximation is intimated connected with continued

fractions in the sense that, for any irrational 0 € [0, 1), if

‘6—2 < 1 ,
q 2q2

then £ must be a convergent of 0 in its continued fraction expansion.
q

It seems that the first result concerning the properties of continuants
of transcendental number or equivalently algebraic numbers is Liouville
inequality [1], which shows that any algebraic number of degree d cannot
be approximated by rational numbers at an order greater than d. Using
this result, one has

Theorem 1.1 ([1]). Let 6 be an irrational and q,(0) be the n-th

continuants in its continued fraction expansion. If, for any ¢ > 0,
log log q,,(0) > cn, for infinitely many n € N, 1.1
then 0 is transcendental.

According to an estimation on the number of solutions to the

inequality

p 1
‘&-E < q2+5 , (12)

when £ is algebraic, Davenport and Roth [2] derived an improvement of

(1.1).

Theorem 1.2 ([2]). Let 0 be an irrational and q,(0) be the n-th

continuants in its continued fraction expansion. If, for any ¢ > 0,

cn

loglogq, 2 ——
Jlogn

then 0 is transcendental.

, for infinitely many n € N, (1.3)
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An qualitative improvement of the number of solutions to inequality
(1.2), which is given by Bombieri and van der Poorten [6], enable

Adamczewski and Bugeaud [3] to obtain an improved one.

Theorem 1.3 ([3]). Let 06 be an irrational and q,(0) be the n-th

continuants in its continued fraction expansion. If, for any ¢ > 0,

2 2
log log q,, > cn?(log n)3 log log n, for infinitely many n € N,  (1.4)
then 0 must be transcendental.

We call a set A purely transcendental set, if all the elements in A are
transcendental. In this note, we intend to explain that if a purely
transcendental set is characterized merely by precise properties of the
individual continuants, besides algebraic numbers, most transcendental

numbers are also excluded from this set. Namely, let ¢ be a positive

function defined on N and set
A(p) = {x €[0,1) : g,(x) > d(n), infinitely many n}.
We show that
Theorem 1.4. If A(¢) is a purely transcendental set, then the set A(¢)
is of Hausdorff dimension at most one-half.

2. Preliminaries

We begin with some notations firstly. Let x € [0, 1) be an irrational
number and [a;(x), ag(x),---] be its regular continued fraction

expansion. For any n > 1, denote by

Pp(*)/ n(x) = [a1(x), ag(x), -, ay(x)],

the n-th convergent of x. With the conventions that p_;(x) =1, ¢_;(x) = 0,

po(x) = 0, go(x) = 1, one has [4]
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Pn+1 (x) = an+1(x)pn(x) + Pp-1 (x)’ n z 0,
dn+1 (x) = 0p41 (x)Qn(x) + anl(x)’ n 20, (2.1)

where {q, },>; are commonly called the continuants.
For any ay, -, a, € N, denote by I,,(a;, -+, a,,) the n-th cylinder

In(al’ ) an) = {x € [0’ 1) : al(x) =ap, an(x) = an}'

Lemma 2.1 ([4]). For any aq, -+, @, € N,

n n
1
I (a7, ,a,)=——7""77——, a; <q, < a; +1),
| n( 1 n)l qn(qn +qn—1) H J n ‘71( J )
Jj= Jj=
where |-| denotes the length of a subset in [0,1) and q,, 9,1 are

recursively defined by (2.1).
Let ¢ be a positive function on N. Set
E(p) = {x €[0,1) : a,(x) > ¢(n), for infinitely many n}.
A complete result on the Hausdorff dimension of E(¢) was given in [5],
but only the needed part is cited here.

Lemma 2.2 ([5]). Write b = exp {lim inf %{W}, If

n—

lim inf
n—oo

’

log o(n) _
n

1

then dimpg E(¢) = A

Recall that

A(p) = {x €[0,1) : g,,(x) = ¢(n), for infinitely many n}.
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Lemma 2.3. If A(¢) is a purely transcendental set, then

lim inf 208900 _

n—w n
Proof. For any integer B >1, let xp =[B, B, ---,]. Lagrange’s

theorem asserts that xp is quadratic irrational. Whence,

d(n) > q,,(xg) = B", for n ultimately.

3. Proof of Main Result

In this section, we give the exact Hausdorff dimension of the purely
transcendental set A(¢).

Lemma 3.1. If A(¢) is a purely transcendental set, then

. 1 3 .. o loglog o(n)
dimg A(¢) = 155 where b = exp {hrlln_)lgf —

Proof. In the light of Lemma 2.3, the lower bound of dimg A(¢) is a

direct consequence of Lemma 2.2.

Now we turn to the upper bound. Two cases will be distinguished
accordingas b =1 or b > 1.

(1) b = 1. For any t > 1, we introduce a family of measures p;:

w(Ln(ar, - ay)) = e PR B 3.1)

M8

where p(t) = log L
Wt

n=1

Now, let Z(n) be the family of all n-th order cylinders I(ay, -, a, ),
which satisfies g,, > ¢(n). Then,

A(¢) = ﬁ 0 U In(al’ ) an)'
N=1

n=N I,,(ay, -, a, )eZ(n)
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For each N > 1, we select all those cylinders in U:z NI (n), which are
maximal (I e U:: ~I () is maximal if there is no other I' in
U:;NI(n) such that I < I' and I # I'). We denote by J(IV) the set of

all maximal cylinders in U:: ~Z (n). It is evident that J(N) is a cover of

A(¢) for any N > 1.

Fix t >1 and ¢ > 0. Choose N, large enough such that for any
n > Ny, elog ¢(n) > np(t).

Fix N > N,. Then for any I,(q;, -+, a, ) € J(N), we have

c 3" loga;-np(t
|In(a1’ s Ay )l% < e*(HE)logqn <e 21:1 e e = ”t(In(al’ ) an))
So,
|In(a1""»an)| < ut(In(al""’an))Sl'
I(a,-,ap )T (N) I(a,-,ap)eJ(N)
This implies dim A(p) <1/2 = - i .

(11) b > 1. By the definition of b, one has, for any ¢ > 0,

n .
He(b—E)] Yo-e-1) < ¢(n), for n ultimately. (3.2)
=1

So, 1t follows
A(p) c {x €[0,1): a,(x) > [e(b%)n_l(b%fl)} -1, i.o., n}.

1
1+b6°

As a consequence of Lemma 2.2, one gets dimg A(¢) <
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