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Abstract 

The purpose of this paper is to present three new methods for finding all simple 
zeros of polynomials simultaneously. First, we give a new method for finding 
simultaneously all simple zeros of polynomials constructed by applying the 
Weierstrass method to the zero in the trapezoidal Newton’s method, and prove 
the convergence of the method. We also present two modified Newton’s methods 
combined with the derivative-free method, which are constructed by applying 
the derivative-free method to the zero in the trapezoidal Newton’s method and 
the midpoint Newton’s method, respectively. Finally, we give a numerical 
comparison between various simultaneous methods for finding zeros of a 
polynomial. 

1. Introduction 

With a typical iteration method such as Newton’s method, an initial 
approximation of a zero converges to a specific zero, but the Weierstrass 
method (or Durand-Kerner method) approximates all simple (real or 
complex) zeros of polynomial simultaneously (see [2, 4]). 
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their approximations. The Weierstrass method (Durand-Kerner method) 
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for ,0≥m  and this method is one of the most frequently used iterative 

methods which give simultaneous computation of all zeros of P. If a 
function ( )zWi  is defined by 
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then ( )zWi  has the same zeros as the polynomial P, and so the problem of 

finding the zeros of P reduces to that of zeros of the function ( ).zWi  If we 

denote ( )iii zWW =  for ni ,,2,1 …=  in the case of ,izz =  (1) can be 

written as 

,ˆ iii Wzz −=   (2) 

where iz  is a current approximation and iẑ  is a new approximation to a 

zero of polynomial ( ).zP  The method constructed by (2) is called the 

Weierstrass-like method (briefly, WLM). 

The aim of this paper is to present three new methods for finding all 
simple zeros of polynomials simultaneously. These new methods are 
based on the Frontini-Sormani’s midpoint Newton’s method ([7]) and the 
Weerakoon’s trapezoidal Newton’s method ([8]), which were modifications 
of the Newton’s method through iterative approximations. 
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It is well-known that Newton’s method is defined by ( )
( )xf
xfxx
′

−=∗  

with an approximation x and a new approximation ∗x  of a zero, and is 
efficient to find a zero of an equation ( ) 0=xf  for a differentiable 

function f with proper conditions and a sufficiently close initial value   
(see [8]). 

In [8], Weerakoon and Fernando proposed the trapezoidal Newton’s 
method defined by 

( )
( ) ( )

.2ˆ
∗′+′

−=
xfxf

xfxx  (3) 

They applied Newton’s method to the ∗x  of the denominator. 

Along with (3), the midpoint Newton’s method that Frontini-Sormani 
proposed in [7] is constructed as 

( )

( ( ))
.

2
1

ˆ
xxxf

xfxx
−+′

−=
∗

 (4) 

They also applied Newton’s method to the ∗x  of the denominator, and so 

set ( )
( ) .xf
xfxx
′

−=∗  

Both the trapezoidal Newton’s method and the midpoint Newton’s 
method are of cubic order, while the original Newton’s method was of 

quadratic order. A variety of methods can be applied to the ∗x  in 
addition to Newton’s method. Petković et al. [5] derived the following 
simultaneous method for finding all simple zeros of polynomials by 

applying the Weierstrass method to the ∗x  in the midpoint Newton’s 
method: 
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which is called Newton-Weierstrass method (or NWM). Also, Petković and 
Petković [6] found the following derivative-free method (or DFM) defined 
as: 

( ) ( ) ,1
ˆ

iii
i

ii zPWzP
Wzz
−−

−=  (6) 

which has a similar form with the one above and this method is of cubic 
order. 

In this paper, we present three new methods for the simultaneous 
approximation of all simple zeros of polynomials by applying the 

Weierstrass-like method and the derivative-free method to ∗x  in the 
trapezoidal Newton’s method and the midpoint Newton’s method. 

Throughout this paper, the convergence of zeros will be discussed and 
the order will be calculated for new constructed methods. We will use the 
notation ( )bOa M=  for two complex numbers a and b, whose moduli are 

of the same order, that is, ( ).bOa =  In addition, the error is defined as 

{ }ini
ee

,,1
max
…=

=  with iii rze −=  for .,,1 ni …=  

In all discussions, the order related to ,ie  which is an error of the 

previously approximated zeros ,iz  is presumed to be the same. After 

that, we will show that the order related to ,ie  which is an error of the 

approximated zeros concerning each method, is identical. For the same 
being, the order related to the already approximated zeros iê  is 

hypothesized to be identical as follows: 

( ) .allfor ieOe Mi =  

In Section 2, we give a new method for finding simultaneously all 
simple zeros of polynomials constructed by applying the Weierstrass 

method to the ∗x  in the trapezoidal Newton’s method, and prove the 
convergence of the method. In Section 3, we present two modified 
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Newton’s methods combined with the derivative-free method. They are 

constructed by applying the derivative-free method to the ∗x  in the 
trapezoidal Newton’s method and the midpoint Newton’s method, 
respectively. In Section 4, we give a numerical comparison between 
various simultaneous methods for finding zeros of a polynomial. Finally, 
we conclude that the convergence of all new constructed methods in this 
paper are similar or superior than other iterative methods of cubic order. 

2. Weierstrass-Like Trapezoidal Newton’s Method 

In this section, we construct a new method for finding simultaneously 
all simple zeros of polynomials of cubic order. By applying the 

Weierstrass method (5) to the ∗x  in the trapezoidal Newton’s method (3), 
we derive a new method constructed as follows: 

( )
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i

ii WzPzP
zPzz
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−=  (7) 

We call (7) the Weierstrass-like trapezoidal Newton’s method, and from 
this, simply, call it Method 1. 

The calculation and discussion of the order of Method 1 are similar to 
those of the Newton-Weierstrass method, which is an alteration of 
Petković’s midpoint Newton’s method (see [5]). From (7), we have the 
following: 

Lemma 1. For a polynomial ( ),zP  we have 
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Proof. By the Taylor’s expansion around ,ir  we have that 
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From Lemma 1, we have the following theorem: 

Theorem 1. If the approximate zero ix  grounded from Method 1 is 

close enough to ir  and the order of ie  is the same, then the order of iê  is 

identical, and ( )3ˆ eOe Mi =  is formed. 

Proof. We easily see that the following equation is satisfied: 

( ) ( ) ( ) ( ) ( ) ( ).
1

eOrzerzrzrzzP Mji
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j
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That is, 

( ) ( )( ) ( ).eOzPOzWW MiMiii ===  (9) 

If ( ) ( ) ( ),1 j
n
j rzzPzQ −−= ∏ =

 then ( )zQ  is a polynomial of order 

,1−n  and ( ) ( )ii zPzQ =  for all i. Therefore, ( )zQ  is the Lagrange 

interpolation of points ,,,, 21 nzzz …  and so we have 
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Now we will find the order of Method 1. If the Taylor’s expansion is 
applied to ( ),ii WzP −′  then we have 
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and of cubic order (see [7, Subsection 5.2]). According to the Chebyshev’s 
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Therefore, the order of iê  is calculated as follows: 
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3. Modified Newton’s Methods Combined  
with Derivative-Free Method 

In this section, we present two modified Newton’s methods combined 
with the derivative-free method (6) for finding all simple zeros of a 
polynomials simultaneously. The one is a form that the derivative-free 

method is applied to the ∗x  in the trapezoidal Newton’s method (3) as 
follows: 
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which is called the derivative-free trapezoidal Newton’s method, or 
simply, Method 2.  

From (13), we have the following theorem: 

Theorem 2. If the approximate zero ix  grounded from Method 2 is 

close enough to ir  and the order of ie  is the same, then the order of iê  is 

identical, and ( )3ˆ eOe Mi =  is formed. 

Proof. Since Petković’s derivative-free method (6) is of cubic order 
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(see [6]). Using (14) and the Taylor’s expansion, iẑ  is calculated as 

follows. (In this case, 
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Therefore, the order of iê  is calculated as follows: 
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Now we apply the derivative-free method to the ∗x  in the midpoint 
Newton’s method (4) and construct the iteration as follows: 
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which is called the derivative-free midpoint Newton’s method. From this, 
we call it Method 3 simply. From (15), we have the following theorem: 

Theorem 3. If the approximate zero ix  grounded from Method 3 is 

close enough to ir  and the order of ie  is the same, then the order of iê  is 

identical, and ( )3ˆ eOe Mi =  is formed. 
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Proof. By using (14) and Taylor’s expansion, iẑ  is calculated as 

follows. (In this case, 
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4. Numerical Comparison 

In this section, we give numerical experiments and comparisons 
between various simultaneous methods for finding zeros of a polynomial. 
These methods are all of cubic order. They include Method 1, Method 2, 
Method 3, the derivative-free method (DFM), the Petković’s Newton-
Weierstrass method (NWM), and the Weierstrass-like method (WLM). 

For a polynomial ( ) ,1
1

1 nn
nn azazazzP ++++= −
− "  we choose 

initial approximations as Aberth’s approach (see [1]): 

( ) .2
32exp10






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



 −π+−= kk n

iRn
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In this case, R is a radius of a circle, where the initial zeros by Aberth’s 
approach are located in complex number plane. We use the following 
Henrici’s fomula to select R (see [3]): 

.max2 1
1

k
kk

aR
n≤≤

=  

According to Henrici’s formula, a disk { }Rzz <:  centered at the origin 

contains all zeros of polynomial ( ).zP  

The polynomials that we used on numerical comparison are as 
follows: 

( ) ( ) ( ) ( ),43211 −−−−= xxxxP  

( ) ( ) ( ) ( ) ( ),543212 −−−−−= xxxxxP   (16) 

( ) ( ) ( ) ( ) ( ) ( ),6543213 −−−−−−= xxxxxxP  

.7386735 2345678
4 ++++++++= xxxxxxxxP  

Here ( ) ( ),, 21 xPxP  and ( )xP3  are Wilkinson’s polynomials when ,6,5,4=n  

respectively.  
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We approximated the zeros until it satisfy the following condition: 

( ( ) ) .10max 10
1

−
≤≤

<m
n

zP kk
 (17) 

In Table 1, we give a numerical comparison between several methods 
to find all zeros of those polynomials (16). It contains the iteration 

number m and the value ( ( ) )m
n

zP kk≤≤1
max  of iterative methods, after we 

approximated (17) to a satisfying label. The smaller the m, the faster 
approximated on the zeros. When m is the same, it can be interpreted 

that a smaller ( ( ) )m
n

zP kk≤≤1
max  leads to a higher accuracy of 

approximation. All computations have been done using MATLAB. 

Table 1. The number of iterations (the error) of iterative methods 

Poly. Method 1 Method 2 Method 3 DFM NWM WLM 

(16) (7) (13) (15) (6) (5) (2) 

1P  9(8e-14) 8(9e-14) 7(1e-14) 9(9e-14) 8(1e-10) 13(3e-12) 

2P  12(7e-13) 11(4e-13) 9(4e-13) 11(2e-13) 11(1e-12) 17(2e-12) 

3P  14(2e-11) 13(5e-12) 11(8e-12) 13(8e-11) 13(7e-12) 21(2e-11) 

4P  14(2e-11) 13(2e-11) 10(2e-11) 14(2e-11) 13(2e-11) 21(2e-11) 

5. Conclusion 

In this paper, three new methods for the simultaneous approximation 
of all simple zeros of polynomials by utilizing the trapezoidal Newton’s 
method and the midpoint Newton’s method were proposed. It was proven 
that each method was of third order. By simultaneously approximating 
all simple zeros of polynomials and by comparing numerical experiments 
with various methods that are of third order, we obtained that the results 
of Method 1 and Method 2 are similar with that of previous methods. 
But, we found out that the result of Method 3 are superior than that of 
any other methods. All methods we constructed in this paper are new and 
creative. It seems that these methods can be applied to various fields, 
and the study on the applications of Method 3 is now in progress. 
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