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Abstract

By the generalization of Darbo’s fixed point theorem, the existence and uniqueness theorem
about the solutions of nonlinear mixed Volterra-Fredholm integral equation in Banach
spaces has been established. Moreover, an iterative sequence converging to our unique
solution has been constructed and an error estimate formula is given. Finally, applying
those to three-point boundary value problems of second order integro-differential equations,
some new conclusion about its solutions has been obtained.
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1. Introduction

The integral equation, since many of the mathematical problems and
physical problem come down to it, has always been an active field. The

study aiming to them emerge in an endless stream.

Over the years, many paper investigate the Volterra or Fredholm

integral equations on the real space R or R" [1], [2], [3]. Recently, in
Banach spaces, Long and Nelakantib [4] investigate the iterative
methods of the linear Fredholm integral equations, Li and Wang [5]
discuss the existence of multiple solutions for the nonlinear Fredholm

integral equations
b
x(t) = f H(t, s, x(s))ds,
a

and Qian and Zhao [6] obtained the coupled quasi-solutions and solutions

of nonlinear impulsive Fredholm integral equations:

x(t) = xo(¢) + XLTH(t, s, x(s))ds + Z a, I (x(¢,)).

to <ty <t

For discussing the boundary value problem (BVP) of the differential or
integro-differential equation, the peoples often change it into an
equivalent integral equation. Relying on the integral equations, Chen
and Li [7] has discussed three-point boundary value problems in Banach

spaces

uw'(t) + f(¢, u@), w'() =06, 0<t<1,

w(0) = 6, u(l) = bu(w),

and obtain the existence of at least one positive solution. By this method,
Wang et al. [8] study the two-point boundary value problems, Liu et al.
[9] and Feng and Pang [10] investigate for impulsive two-point and three-
point boundary value problems, respectively, and obtain the existence of

their positive solutions.
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In this paper, we study the following integral equation:

u(t) = v(t) + j Oa W, $)f(s, uls), Tu(s), (Su)(s))ds, (1.1)

where W(.t),W(t,)C[0,a).p e C[0,a], Tu= | ; K, sYu(s)ds, Su= [ hit, sy

(s)ds, h(t, s) € C(J x J, R), k(t, s) e C(D, R), D ={(t,s) e J xJ : t > s}
and the same as follows. The existence of solutions of (1.1) is obtained.
And in another proper conditions, the unique solution of (1.1) and an
error estimate of the solution are gotten. Finally, we applied it to the

three-point boundary value problem (BVP):

u'(t) = f(¢, u(t), Tu(t), Su(t)), Vted =]0,al,
1.2)
u(0) =0, wula)=bulp),

where p € (0, a). And get some new results. As follows, let ky = max
{|k(t, s)| : (¢, s) € D}, hg = max{|h(t, s)| : (t, s) € J x J}.

2. Preliminaries and Some Lemmas

Let a(-) denotes the Kuratowski measure of non-compactness in

Banach space E. For details on the definition and properties of the
measure of non-compactness, please refer to the references [11], [12],
[13].

Lemma 2.1 ([(12]). If H < C(J, E) is bounded and equicontinuous, then

a(H) = max a(H(2)).

Lemma 2.2 ([13]). If H < C(J, E) is bounded and the elements of H are

equicontinuous on J, then o({u(t)u € H}) is continuous on J and

a({ I Jult)dlu € H}) < I Jolfultfu < H))d.
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Lemma 2.3 ([14]). Let F be a closed and convex subset of a real Banach

space E, the operator A : F — F be continuous and A(F) be bounded.
For any bounded subset H — F, set

AY(H) = A(H), A™H)= A(co(A"1(H))), n=23, ...
If there exist a constant 0 <y <1 and a positive integer ny such that for
any bounded subset H ¢ F
a(A™ (H)) < yo(H),
then A has at least one fixed point in F.

Lemma 2.4 ([15]). Assume for all r > 0, f is bounded and uniformly
continuous on J x B, x B, x B, x B, and H < C(J, E) is bounded and
equicontinuous, then {f(t, x(¢), (Tx)(¢), (Sx)(¢)) : x € H} is bounded and

equicontinuous in C(J, E).

3. Main Results

For convenience, we give the assumptions as follows:

(H1). For any r >0, f 1is bounded and uniformly continuous on
J x B, x B, x B,, and there exist non-negative Lebesgue integrable
functions L;(i = 1, 2, 3) such that for any bounded sets B; € B, (i =1, 2, 3)
and ¢ € JJ,

a(f(t, By, By, Bg)) < Ly(t)a(By) + Lo(t)a(Bg) + L3(t)ouBs).

: f(t’ X, U, U)"
(H2). B= limsup (sup”—
el ol 400 ced el + fed] + o]

ho = max{|h(¢, s)| : (¢, s) € J x J} such that

), ko = max{|k(t, s)| : (¢, s) € D},

np <1, 3.1

a a ,
where n = max{ tgf(%)é]fo W(t, s)[(1 + sko + hg )ds, tgf&}é]-.‘o Wi, s)(1 +

Sko + ho )dS}
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(H3). There exists non-negative function o, ® € C[0, 1] such that
Wz, s)| < o(t)o(s), vt, s € [0, 1], (3.2)

and
p= j: o(s)o(s) [Ly(s) + skoLs(s) + ahgLs(s)]ds < 1. (3.3)

Theorem 3.1. Let E be a real Banach space, the assumptions (H1)-(H3)
be satisfied, then the mixed-type integral equation (1.1) has at least one
solution u* € C(J, E).

Proof. Let
a
(Au)(0) = vle) + [ Wt (s, uls). Tu(o). (Suw)(&)ds. (3.9
We will prove the operator A has fixed point on C(J, E).

By (3.1), there exists B’ > B such that

np’ < 1. (3.5)
From the definitions of B and B', there exists N > 0 such that
£t %, < BO] + ll + o), Ve e, e+l + o] > N,
Since f is bounded on any bounded set, we have
IF @ x, w, v)| < B'(J| + [l + o) + M, Vied, x, uvekE, (3.6)
where M = sup{|f(¢, x, u, v)||: ¢ € J, ||| + || + | < N} < 0. For any

ueC(J, E)and t € J, it follows from (3.4) and (3.6)

lAw) @) = oo + [ IWee, (s, wls). Tuls). (Su) ) ds

< o]+ B[ G, )10+ sy + ho ) u(s)] + M]ds

< nB'"u”C + K.
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Let r>K/(1-np), T, =ix € C(J, E) : |x|, <r}. Since f is uniformly

continuous, we have that A : T, — T, is continuous and bounded.

Let F =coA(T,). Then A:F — F is a continuous and bounded
operator. Now we prove that for any H < F, there exist a positive

integer ny and 0 < y <1 such that
ac(A™(H)) < yac(H), (3.7)

where A"(H) = A(co(A" ' (H))), n = 2, 3, .... By the definition of the

operator A and the assumption that f is uniformly continuous, A(H) are

bounded and equicontinuous on J. Hence from Lemma 2.4, A"(H)
(n=1,2,...) are bounded and equicontinuous. Therefore, for any

positive integer n, we get from Lemma 2.1
ac(A™(H)) = sup o((A™(H))(2))- (3.8)
(S
It follows from (3.2), (3.4) and Lemma 2.2

a((AH) (1)) < of _[ : W, s)f(s, H(s), TH(s), (SH)(s))ds)

< j : W(t, 8)[Ly(s) + skoLa(s) + ahoLs(s)]dso(H)
< Lo(t)a(H),
where L = jgm(s) [Li(s) + skgLg(s) + ahgLs(s)]ds. Set

o((A*H) (1)) < Lp"o(t)o(H),

we have

a((AMTH) (1)) < a(I:W(t, s)f(s, A¥H(s), TA*H(s), (SA*H(s))ds)
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a
< J. W(t, s)[L;(s) + skoLy(s) + ahyLs(s)]a(A*H(s))ds
0

< Lp*s(t)a(H). (3.9)
By the mathematical reduction, we obtain

ac((A™(H))) < Lp™ ™t max ot)ac(H), n=1,273, ... (3.10)
€
Thus, there exist a positive integer ny and 0 < y < 1 such that

ac((A™(H))) < yac(H),
which imply that the operator A has at least one fixed point u € H < F

c C(J, E) from the Lemma 2.3. So the integral equation (1.1) has at

least one solution u € C(J, E).

(H4). For any r >0, f 1is bounded and uniformly continuous on
J x B, x B, x B,, and there exist non-negative Lebesgue integrable
functions L; (i =1, 2, 3) such that for any x;,y; e E(i=1,2,3) and
ted,

3
I£(t, y1.92, ¥3) = f(t, %1, %9, x3)| < ZLi(t)"yi - ).
i=1

Theorem 3.2. Let E be a real Banach space, the assumptions (H3), (H4)
be satisfied. Then integral equation (1.1) has an unique solution

u e C(J, E). Moreover, for any zy e C(J, E), the iterative sequence
defined by

Zn(t) = W(t) + J.:W(t? S)f(s9 anl(s)? (Tznfl )(8)9 (Sznfl )(S))dS, n=1223, -,

converges to u”(t) uniformly as norm || on J and the error estimate is
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pn—l
1-p

[ -z, < L max olt) - |Azo - 20|, (3.11)

where the constants L, p and the function o are defined in Theorem 3.1.

Proof. From (3.3), for any x, y € C(J, E), by the similar rational

procedure of (3.9), we have
[(A"x) (@) - (A"y) (@) < Lpn_lc(t)”x -y, ted, n=1273 ..,
and then

[(A™x) - (A™y)| < Lp" ™ max o(t)fx = |- (3.12)

For any z, € C(J, E), let x = Azq, y = z5. And from (3.12), we have for

any positive integer p > 0

"Zn+p ~2n ” < ||Zn+p ~ Rn+p-1 " + "Zn+p—1 ~ Zn+p-2 ” toeet "Zn+1 ~2p "

IA

Lmax o{t) (p"* P72 4 p"* P78 4 w4 p" 1) Azg — 2o

n-1

f_ 5 L max o(t)| Az - 2o (3.13)

IN

Thus from (3.3), z,, is a Cauchy sequence in C(J, E). Let u* = lim z,,

n—w

from (3.4), we know u* is a solution of (1.1). Moreover, for (3.13), let

p — ©, we have the error estimate formula (3.11).

On the other hand, if «™ is also the solution of (1.1), i.e.,

u™ = Au™", then from (3.12), we have, as n — o,
[ =z, | = |[A ™ - A%z < LI?%]X o(t)p" Hu™ - 20| = 0.
S

This imply ™ = u* and the theorem is proved.
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4. Application in Three-Point Boundary Value Problems

The BVP(1.2) is equivalent to the nonlinear integro-differential
equation

u(t) = v(t) + J: G(t, s)f(s, u(s), Tu(s), (Su)(s))ds,

where y(¢) = 0,
sl-bu—-t1-0b)], O0<s<t<p<lor0<s<u<t<l,
tll-bu-s1-0), 0<t<s<p<l,

1
G, s) =~
Tls(@-bu)-t(s—bu), 0O<p<s<t<l,

t1-s), O<p<t<s<lor0<t<p<s<l,
and T =1-bp. Let

1 1-bu-s(1-b),0<s<p<l,

w(s) ==
1-s, O<pu<s<l,
easily we can see
IG(¢, s)| < w(s)t, ¢ se][0,1].

Thus, we get following conclusions from Theorem 3.1.

Theorem 4.1. If the assumptions (H1), (H2) be satisfied and the inequality
1
p= I sw(s)[Ly(s) + skoLo(s) + hoLs(s)]ds < 1 (4.1)
0

hold, then BVP(1.2) has at least one solution.

Theorem 4.2. If the assumption (H4) be satisfied and the inequality (4.1)
hold, then BVP(1.2) has an unique solution u”(t). Moreover, for amy
zg € C(J, E), the iterative sequence defined by

20(6) = 00+ [ Gl (5. 201(6), (T2, 1) (5), (S20) @), =12,
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converges to u”(t) uniformly as norm |- | on J and the error estimate is
. pn—l
™ -z, < L- EHAZO - 2o, (4.2)

1
where the constants L = max IO w(s)[L;(s) + skoLg(s) + hoLs(s)]ds and p
(S

is defined by the formula (4.1).
Proof. Since it is similar to the proof of Theorem 3.2, we omit the proof.

Especially, as the functions L; in (H1) fade into constants Z; (i = 1, 2, 3).

Directly calculating the integral in the formula (4.1), we obtain that the
constants L and p in the Theorems 4.1 and 4.2 can be replaced by the

following formulas:

Jds = 20+ hols) (1 - b’ ) + kigly(1 — b )

1
p = _[Osw(s)[ll + skolg + hol3 12(1 - bu) ’

(4.3)
and

3(l + hols) (1 = bu®) + kolo(1 — bu®)
6(1 - bp) ’

L= ;w(s)[ll + skoly + hols |ds =

(4.4)

which can be conveniently used in our Theorems 4.1 and 4.2.
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