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Abstract 

By the generalization of Darbo’s fixed point theorem, the existence and uniqueness theorem 
about the solutions of nonlinear mixed Volterra-Fredholm integral equation in Banach 
spaces has been established. Moreover, an iterative sequence converging to our unique 
solution has been constructed and an error estimate formula is given. Finally, applying 
those to three-point boundary value problems of second order integro-differential equations, 
some new conclusion about its solutions has been obtained. 
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1. Introduction 

The integral equation, since many of the mathematical problems and 
physical problem come down to it, has always been an active field. The 
study aiming to them emerge in an endless stream. 

Over the years, many paper investigate the Volterra or Fredholm 

integral equations on the real space R or nR  [1], [2], [3]. Recently, in 
Banach spaces, Long and Nelakantib [4] investigate the iterative 
methods of the linear Fredholm integral equations, Li and Wang [5] 
discuss the existence of multiple solutions for the nonlinear Fredholm 
integral equations 
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and Qian and Zhao [6] obtained the coupled quasi-solutions and solutions 
of nonlinear impulsive Fredholm integral equations: 
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For discussing the boundary value problem (BVP) of the differential or 
integro-differential equation, the peoples often change it into an 
equivalent integral equation. Relying on the integral equations, Chen 
and Li [7] has discussed three-point boundary value problems in Banach 
spaces 
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and obtain the existence of at least one positive solution. By this method, 
Wang et al. [8] study the two-point boundary value problems, Liu et al. 
[9] and Feng and Pang [10] investigate for impulsive two-point and three-
point boundary value problems, respectively, and obtain the existence of 
their positive solutions. 
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In this paper, we study the following integral equation: 
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where ( ) ( ) [ ] [ ] ( ) ( ) ( )usthSudssustTuaCvaCtWtW
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and the same as follows. The existence of solutions of (1.1) is obtained. 
And in another proper conditions, the unique solution of (1.1) and an 
error estimate of the solution are gotten. Finally, we applied it to the 
three-point boundary value problem (BVP): 
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where ( ).,0 a∈µ  And get some new results. As follows, let max0 =k  

( ) ( ){ } ( ) ( ){ }.,:,max,,:, 0 JJststhhDstst ×∈=∈k  

2. Preliminaries and Some Lemmas 

Let ( )⋅α  denotes the Kuratowski measure of non-compactness in 

Banach space E. For details on the definition and properties of the 
measure of non-compactness, please refer to the references [11], [12], 
[13]. 

Lemma 2.1 ([12]). If ( )EJCH ,⊂  is bounded and equicontinuous, then 

( ) ( )( ).max tHH
Jt

α=α
∈

 

Lemma 2.2 ([13]). If ( )EJCH ,⊂  is bounded and the elements of H are 

equicontinuous on J, then ( ){ }( )Hutu ∈α  is continuous on J and 
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Lemma 2.3 ([14]). Let F be a closed and convex subset of a real Banach 
space E, the operator FFA →:  be continuous and ( )FA  be bounded. 

For any bounded subset ,FH ⊂  set 

( ) ( ) ( ) ( ( ( ))) .,3,2,, 11 …=== − nHAocAHAHAHA nn  

If there exist a constant 10 <γ≤  and a positive integer 0n  such that for 

any bounded subset FH ⊂  

( ( )) ( ),0 HHAn γα≤α  

then A has at least one fixed point in F. 

Lemma 2.4 ([15]). Assume for all fr ,0>  is bounded and uniformly 

continuous on rrrr BBBBJ ××××  and ( )EJCH ,⊂  is bounded and 

equicontinuous, then ( ) ( ) ( ) ( ) ( )( ){ }HxtSxtTxtxtf ∈:,,,  is bounded and 

equicontinuous in ( )., EJC  

3. Main Results 

For convenience, we give the assumptions as follows: 

(H1). For any fr ,0>  is bounded and uniformly continuous on 
,rrr BBBJ ×××  and there exist non-negative Lebesgue integrable 

functions ( )3,2,1=iLi  such that for any bounded sets ( )3,2,1=∈ iBB ri  
and ,Jt ∈  
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(H3). There exists non-negative function [ ]1,0, C∈ωσ  such that 

( ) ( ) ( ) [ ],1,0,,, ∈∀ωσ≤ stststW   (3.2) 

and 

( ) ( ) [ ( ) ( ) ( )] .130201
1

0
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Theorem 3.1. Let E be a real Banach space, the assumptions (H1)-(H3) 
be satisfied, then the mixed-type integral equation (1.1) has at least one 
solution ( )., EJCu ∈∗  

Proof. Let 
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We will prove the operator A has fixed point on ( )., EJC  

By (3.1), there exists β>β′  such that 

.1<β′η   (3.5) 

From the definitions of β  and ,β′  there exists 0>N  such that 

( ) ( ) .,,,,, NvuxJtvuxvuxtf >++∈∀++β′<  

Since f is bounded on any bounded set, we have 

( ) ( ) ,,,,,,,, EvuxJtMvuxvuxtf ∈∈∀+++β′≤  (3.6) 

where { ( ) } .,:,,,sup ∞<<++∈= NvuxJtvuxtfM  For any 

( )EJCu ,∈  and ,Jt ∈  it follows from (3.4) and (3.6) 
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Let ( ) { ( ) }.:,,1 rxEJCxTKr Cr ≤∈=β′η−>  Since f is uniformly 

continuous, we have that rr TTA →:  is continuous and bounded. 

Let ( ).rToAcF =  Then FFA →:  is a continuous and bounded 

operator. Now we prove that for any ,FH ⊂  there exist a positive 

integer 0n  and 10 <γ<  such that 

( ( )) ( ),0 HHA C
n

C γα≤α   (3.7) 

where ( ) ( ( ( ))) ....,3,2,1 == − nHAocAHA nn  By the definition of the 

operator A and the assumption that f is uniformly continuous, ( )HA  are 

bounded and equicontinuous on J. Hence from Lemma 2.4, ( )HAn  

( )…,2,1=n  are bounded and equicontinuous. Therefore, for any 

positive integer n, we get from Lemma 2.1 

( ( )) (( ( )) ( )).sup tHAHA n
Jt

n
C α=α

∈
 (3.8) 

It follows from (3.2), (3.4) and Lemma 2.2 
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( ) [ ( ) ( ) ( )] ( ( ))dssHAsLahsLssLstW
a kk α++≤ ∫ 30201
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By the mathematical reduction, we obtain 

(( ( ))) ( ) ( ) .,3,2,1,max1 …=ασρ≤α
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Thus, there exist a positive integer 0n  and 10 <γ<  such that 

(( ( ))) ( ),0 HHA C
n

C γα≤α  

which imply that the operator A has at least one fixed point FHu ⊂∈  
( )EJC ,⊂  from the Lemma 2.3. So the integral equation (1.1) has at 

least one solution ( )., EJCu ∈  

(H4). For any fr ,0>  is bounded and uniformly continuous on 

,rrr BBBJ ×××  and there exist non-negative Lebesgue integrable 

functions ( )3,2,1=iLi  such that for any ( )3,2,1, =∈ iEyx ii  and 
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Theorem 3.2. Let E be a real Banach space, the assumptions (H3), (H4) 
be satisfied. Then integral equation (1.1) has an unique solution 

( )., EJCu ∈  Moreover, for any ( ),,0 EJCz ∈  the iterative sequence 

defined by 

( ) ( ) ( ) ( ( ) ( ) ( ) ( ) ( )) ,,3,2,1,,,,, 111
0
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converges to ( )tu∗  uniformly as norm C⋅  on J and the error estimate is 
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( ) ,1max 00
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where the constants ρ,L  and the function σ  are defined in Theorem 3.1. 

Proof. From (3.3), for any ( ),,, EJCyx ∈  by the similar rational 

procedure of (3.9), we have 

( ) ( ) ( ) ( ) ( ) ,,3,2,1,,1 …=∈−σρ≤− − nJtyxtLtyAtxA nnn  

and then 
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For any ( ),,0 EJCz ∈  let ., 00 zyAzx ==  And from (3.12), we have for 

any positive integer 0>p  
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Thus from (3.3), nz  is a Cauchy sequence in ( )., EJC  Let ,lim nn
zu

∞→
∗ =  

from (3.4), we know ∗u  is a solution of (1.1). Moreover, for (3.13), let 
,∞→p  we have the error estimate formula (3.11). 

On the other hand, if ∗∗u  is also the solution of (1.1), i.e., 

,∗∗∗∗ = Auu  then from (3.12), we have, as ,∞→n  

( ) .0max 0
1
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This imply ∗∗∗ = uu  and the theorem is proved. 
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4. Application in Three-Point Boundary Value Problems 

The BVP(1.2) is equivalent to the nonlinear integro-differential 
equation 
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easily we can see 

( ) ( ) [ ].1,0,,, ∈≤ sttswstG  

Thus, we get following conclusions from Theorem 3.1. 

Theorem 4.1. If the assumptions (H1), (H2) be satisfied and the inequality 

( ) [ ( ) ( ) ( )] 130201
1

0
<++=ρ ∫ dssLhsLssLssw k   (4.1) 

hold, then BVP(1.2) has at least one solution. 

Theorem 4.2. If the assumption (H4) be satisfied and the inequality (4.1) 

hold, then BVP(1.2) has an unique solution ( ).tu∗  Moreover, for any 

( ),,0 EJCz ∈  the iterative sequence defined by 

( ) ( ) ( ) ( ( ) ( ) ( ) ( ) ( )) ,,3,2,1,,,,, 111
0
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converges to ( )tu∗  uniformly as norm C⋅  on J and the error estimate is 

,1 00
1

zAzLzu
n

n −
ρ−

ρ⋅≤−
−

∗   (4.2) 

where the constants ( ) [ ( ) ( ) ( )]dssLhsLssLswL
Jt 30201

1
0

max ++= ∫∈
k  and ρ  

is defined by the formula (4.1). 

Proof. Since it is similar to the proof of Theorem 3.2, we omit the proof. 

Especially, as the functions iL  in (H1) fade into constants ( ).3,2,1=ili  

Directly calculating the integral in the formula (4.1), we obtain that the 
constants L and ρ  in the Theorems 4.1 and 4.2 can be replaced by the 

following formulas: 

( ) [ ] ( ) ( ) ( )
( ) ,112

112 4
20

3
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1
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and 
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113 3
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2
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1
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which can be conveniently used in our Theorems 4.1 and 4.2. 
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