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Abstract

This paper establishes strong laws for ratios and differences of order statistics
from various distributions. Some of these results allow us to obtain estimators
of the parameters from those distributions. This is an extension of the method
of moments technique used in estimation theory and it has performed well in

simulations.

1. Introduction

This paper establishes strong laws for resampling of order statistics
from various distributions. From some of these strong laws, we can create

an estimate of the parameters from these distributions. Let X, be

independent and identically distributed random variables within each

sample, where k£ =1, 2, ..., m, and n =1, 2, 3, .... The sample size m,,

surprisingly, turns out to be quite unimportant in all of our theorems.

The order statistics from this sample are X,q) < Xp9) < - < Xy, )
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Next, we choose two order statistics from this sample of m, random

variables, say X,;) and X,;), and either take the ratio or the difference

of these two. The final random variable in Sections 2 and 3 is

_ X)) ,

Rnij_Xn(i) 13i<j£m

n»

while in the last section, we observe
Sniz = Xy(2) — Xnq)-

We obtain strong laws for either R,;; or S, and in some cases we will
use these theorems to estimate the parameter from the underlying

distribution.

We need to mention that the constant C, used in the proofs, denotes a
generic real number that is not necessarily the same in each appearance.
It is used as an upper bound in order to establish the convergence of our

various series.
2. Strong Laws from a Uniform Distribution

The underlying distribution in this section is the classic uniform
distribution, f(x)=(1/6,)I(0 < x < 0,,). It is important to note that the

parameter, 0, can vary from sample to sample, hence the 0, in our

distribution. We establish strong laws for R Sometimes this

nij*
expectation is finite, sometimes not. This depends solely on i and in all

cases we obtain a strong law, even if E(R,;;) = «, see Adler [1]. In order

to establish the density of Ry;;, we need the joint density of X,; and

Xn(j)

i x;) = m,! (ﬁ)il[ﬁ_ﬁjj_i_l[l_ﬁJmn_j
T GG —i-1)(m, - )02 \0,) (0, 0, 0,

Next, let w = x; and r = x; / x;. The Jacobian is w and the joint density

of wandris
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Integrating out the dummy variable, w, and letting v = rw/90,, the

density of R,; is

m,! Onlr (W N w )T rw ™
B sl o) Gr-a) L-gy)
@G-1G-i-1t(m, —j)e; Jo n n n n

G-1)G-i-1(m, - j)ezJo 0y, 0,

_ mp! (r —1)/ 7 [ On/rwj_l(l B ﬂ)mn_]dw
@-DG-i-Dl(m, —j)o6; J0 n

_ mpy (r — 1)/ 771 | '1(9nujj1(1_u)mn_j(9nduj
@-DG-i-D(m, —j)ej JoL T 4

B my!(r — 1) 771
(=G —i=1)0(m, = !

_ my! (r ~ 1) ((j—1>!<mn —j)!j
(-G —i-1)(m, —j)r my,!

1 . 1 .
I w1 -uw)" du
0

_ (G- -y
G-DG-i-1r

which is free of both m,, and 6,,.

The expectation of R,; is finite iff i > 2, which produces a classic
strong law.

Theorem 1. If X,,;) and X, ;) are two order statistics from a uniform

(0, 6,,) distribution with j > i and sample size m,,, then for all i > 2

ZN Xn(j)
im e _ -1

almost surely.
N> N 1 - Y
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Proof. All we need to do is establish the expected value of R,;. Let

u=1/r
MRW)=@_&Ef%_mjfv—nf*%f”m
_ (-1 ! j—i-1 i
TEoDG-i-1) .[0(1_”)] wdu
_ (j -1 r(j-9ré-1)
(T
_J-1
i1
which concludes this proof. O

Next, we need to explore what happens when ¢ = 1. In this situation,

the expectation is infinite, but barely for all j.

Theorem 2. If X,q) and X,y are two order statistics from a

uniform (0, 0,,) distribution with sample size m,,, then for all j > 2 and

o> —2

ZN (Ig n)* X5

=1 X P

lim * 2on() _ -1 almost surely.
N> (g N)OH'Z o+ 2

Proof. This is an “exact strong laws”. Our random variable R,;; has

the following density:

fo) =G -1 -1
Thus,

xP{Ryy; > x} = x(j —I)Jw(r 1Y 2 idr
X

ST (T2 ek [ kg,
= x(j 1);( . J( 1)12kJ'x k=ig
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(' j( 1)]2k h—j+1

1>Z =

L [J' ; 2] (1) 2k i+

. J
=(J—1)k:0 -
~j-1
Using Example 2 from Adler [1], the conclusion is immediate. O

The conclusion of both theorems are free of the sample size, m,,, and
also our parameter, 0,,, which is not the case for our next distribution. If

the parameter does not disappear when we let N — oo, then we can use

these results to obtain an estimator, based on these strong laws. It needs
to be repeated that in all cases of our uniform distribution a strong law
does exist and that the distribution of R,;; is similar for all j > 2. All of

those distributions have infinite mean, but barely.

3. Particular Beta Distribution

In this section, the underlying distribution is f(x) = ax® 110 < x < 1),

which belongs to the Beta family of densities. The uniform is a Beta
“stretched” from (0, ) to (0, 1). The final result here is quite different

from those in Section 2. The sample size once again disappears from the

distribution of R,;, but the parameter in this family doesn’t. That allows

us to estimate this unknown constant, a. Also, there are three different
cases here. They all depend on the magnitude of ai. Once again, we start

with the joint distribution of our order statistics, X,,;) and X,;), where
1<i<j<m,

2

) m,'la

A F T gy Py

i1 j—i-1
o )7 =)

x ()1 - 28y
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Next, let w = x; and r = x; / x;. The Jacobian is w and the joint density
of wandris
2

flw,r) = G-1)( _’nlni(i)‘ (m, =) @) -1 ) - rw)® )

Integrating out the dummy variable, w, and letting u = rw, then

x = u?, the density of R,;; is

mn!a2 a-1/.a j-i-1 1/r aj-1 aymy—j
(i—l)!(j—i—l)!(mn—j)!r (r* -1) IO w1 - (rw)®) dw

mp,! a?

REDIEEDICET

. .. 1 . .
a—a]—l(ra _ l)j—z—lj uajfl(l e )mn—jdu
0

my! a-aj-1/_.a il j- my—j
R TITEi e L A I A

mn! a a-aj-1(..a j—i— (J - 1)! (mn - ])’
T Ty L A e )

-1)a a-agj-1/..a j—i—
:(i—g)!(jl}i—l)!r G

Next, we observe the value of ai. If ai <1, then no strong law can be

established. In that situation, we will just need to increase which smaller

order statistic we select, Xn(i)’ so that ai > 1. If ai > 1, then a classic
strong law exists.
Theorem 3. Let X,,;y and X, ;) be two order statistics from our Beta

distribution with j > i and sample size m,,. If ai > 1, then

N Xn(]) 1
~ i —1) ] — —
lim Zn:l Xn(z) B (] 1)- F(L a )

= almost surely.
N-oo N . .1
> (-1 - 1)




RESAMPLING USING ORDER STATISTICS 95

Proof. Once again, all we need to do is establish the expected value

of R,;j. Let u =%, then x =1/u

) = G- gj)' Ejlzl ?— 1 .[ 1oora_aj(’“a -1y dr

i 1) © 1_; .
S T IR R !

i —1) 1 -1 ii—
T - 1§!J(j })z —1) jox )

_( (j - 1) )F(i—%)F(j—i)
G- rg-1)

G-nra-1)
(-TG-1)

’

which is finite since aj > ai > 1, which implies that both j—l and
a
.1 .. . .
I — — are positive, concluding this proof. O
a

Theorem 3 allows us to estimate the parameter a by resampling the
ratio of various order statistics from our data. In Theorem 4, we obtain

an “exact strong laws” when ai = 1. And even though E(R,;)=» a
strong law still exists.
Theorem 4. Let X;) and X,;) be two order statistics from our Beta

distribution with j > i and sample size m,. If ai =1, then for all

o>-—2

ZN (logn)” X, ;) (j-1
nl X ( ' J

. i
1 = Imost ly.
A s N)a+2 o Glmost surely
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Proof. Once again, we quote Example 2 from Adler [1]

ax(j — 1) * a—aj- i
XP{R,; > x} = (i—l)!((Jj—i)— 0 Ix ra=a-l(e 1yl

_ i1,
ax(j —1) ]i (] -i- 1) a l)j—i—l—kJ‘ * pa-aj-1+ak g,

TE-DG-i- &k x

. Jds2es i1k (% aediolea
:(i—?;c!((]j_—li)!—l)![Z(] . 1)(_1)1 1 ijr jtrak gy

k=0

+ J.Dora—aj—1+a(j—i—l)dr:|'

X

The last term is the important one. Using ai = 1,

ax(] - 1)! J.w a-agj-1+a(j-i-1),7.. _ ax(.] - 1)! IOO a-aj-l+aj—ai—a
TG0l G Iy P a
- M‘[w ~ai-1
“uG-ionl, " @
.y e
= MI Vﬁzdr
G -i-1)0Jy

j-1
.
As for the other terms in our series

ax(j — 1) jfﬁ joi-l - l)j—i—l—kjwra—aj—1+akdr
G-G-i-0 &, p

j-i-2 © ]
< Cx Z I ra—a]—lﬂzkdr
x

< Cx-x %% = Cx™@ = o(1).
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So, we have

j-1
xP{Rm] >.’X,‘}~ s

which allows us to obtain an “exact strong laws” via Example 2 from
Adler [1]. O

We can use either Theorem 3 or Theorem 4 to estimate the parameter
a. But it is better to use Theorem 3 since the partial sums in Theorem 4
converges very slowly. Using Theorem 3 and adjacent order statistics,

i =j—1, we have

EZN Xn(j)
lim n=1Xp(j_1) _ -

N—o© N . 1
j-1-=
a

almost surely.

— N .
Set LN]- =N lznlen(j)/Xn(j,l). We have Ly; converging to

(j-1)/(-1-1/a). Solving for a, we have as a natural estimator of our
G-D(Ly, -1)

which leads to

parameter , forall j =2, ..., m,. Next, we sum over all j,

a = - ’
NV LGy, 1)

as a viable estimator of a. This is the type of estimator that was proved
successful in Adler and Skountrianos [2]. In that paper, we resampled
over and over again and then averaged over all those samples to obtain a
very powerful estimator of the parameter. Likewise, we can average over
more pairs of ratios of order statistics by looking at non-adjacent pairings

to develop a more complex estimator of a. Also, we can use Theorem 4 to

-1
estimate the parameter a. The limit in Theorem 4 is (] , )/(oc +2), but
i
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with ai = 1 we can solve for a = 1/i. However, the partial sums in these

theorems converge very slowly, hence it takes too many observations in
order to get a good estimator. That is why, it is better to use a classic
strong law instead on an “exact strong laws” when running these

simulations.
4. The Normal Distribution

Now for something completely different. In this section, we use
differences of our order statistics to estimate the standard deviation from
a normal distribution. Here we stick to a fixed sample size of m = 2. Our

random variables are X,; and X,5, which are independent and
identically distributed N(u,, o? ). The mean can vary from data set to
data set, but not the variance. The statistic we pivot on will be

Sp = Xp(2) — Xpa), which is the difference between the minimum and

maximum of each data set and from this statistic we can estimate o.
This statistic is also known as the range. In order to obtain the

distribution of S,,, we need the joint density of our two order statistics
1 -1 2 2
flon, 32) = L exp( =5 [l = w)? + (o - a1
ile} 2c

Next, let w = x; and s = x9 — x7. The Jacobian is 1 and the joint density

of w and s 1s

fw, s>=n}7exp(§[<w—un>2 +<w+s—un>2]j

= %exp (_—21 [w? - 2u,w + sw]j exp (_—12 [s2 - 2u,s + 2u2 ]]
o c 20

Integrating out the dummy variable, w and completing the square, the

density of S,, is
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® - —_—
fe)=—5 | ex (_21 [w? ~ 200 + Sw])dw " exp (2_12 [s% — 2,5 + 2017 ]j
. .

o (o)
2
e _ —9
:% exp _21[w+3—l/ln} dw
no” ¥ - c 2
1 [s-2p 2 -1:29 2
- exp —2[—”} exp —2[3 - 2u,,s + 2u;, |
c 2 20

1 * -2 s —2u, 2
. d
Van(s /V2) J.—ooexp{2c2 {w+ 2 ] v
1 1 [s-2u, 1,9 9
.\/;c exp 5_2 — | |exP g[s - 21,8 + 2u; |

2
“1-(s-2
_— exp[ 1{ (5 = 2uy) +s2—2uns+2p%}]

«/;G 2(52 2

1 (—SZJ
= —F/——€exp CHE
o 4c

which is free of the parameter p,. This allows us to change the mean

from sample to sample, if we choose to. The expected value of our random

variable S,, is which is easy to calculate. Thus our estimate of o is

25
\/; ’

N
Sy = —GZ’HS" .

2N
And as we did in Adler and Skountrianos [2], we can now estimate the
standard deviation in a normal distribution by resampling these pairs of
order statistics. In that paper, we reshuffle our original data to create
more and more pairs of order statistics to obtain a very powerful

estimator of our parameter.
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