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Abstract 

This paper establishes strong laws for ratios and differences of order statistics 
from various distributions. Some of these results allow us to obtain estimators 
of the parameters from those distributions. This is an extension of the method 
of moments technique used in estimation theory and it has performed well in 
simulations. 

1. Introduction 

This paper establishes strong laws for resampling of order statistics 
from various distributions. From some of these strong laws, we can create 
an estimate of the parameters from these distributions. Let knX  be 

independent and identically distributed random variables within each 
sample, where nm,,2,1 …=k  and .,3,2,1 …=n  The sample size ,nm  

surprisingly, turns out to be quite unimportant in all of our theorems. 
The order statistics from this sample are ( ) ( ) ( ).21 nmnnn XXX ≤≤≤ "  
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Next, we choose two order statistics from this sample of nm  random 

variables, say ( )inX  and ( ),jnX  and either take the ratio or the difference 

of these two. The final random variable in Sections 2 and 3 is 

( )

( )
,1, n

in

jn
nij mjiX

X
R ≤<≤=  

while in the last section, we observe 

( ) ( ).1212 nnn XXS −=  

We obtain strong laws for either nijR  or 12nS  and in some cases we will 

use these theorems to estimate the parameter from the underlying 
distribution. 

We need to mention that the constant C, used in the proofs, denotes a 
generic real number that is not necessarily the same in each appearance. 
It is used as an upper bound in order to establish the convergence of our 
various series. 

2. Strong Laws from a Uniform Distribution 

The underlying distribution in this section is the classic uniform 
distribution, ( ) ( ) ( ).01 nn xIxf θ≤≤θ=  It is important to note that the 

parameter, ,θ  can vary from sample to sample, hence the nθ  in our 

distribution. We establish strong laws for .nijR  Sometimes this 

expectation is finite, sometimes not. This depends solely on i and in all 
cases we obtain a strong law, even if ( ) ,∞=nijRE  see Adler [1]. In order 

to establish the density of ,nijR  we need the joint density of ( )inX  and 

( )jnX  
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Next, let ixw =  and .ij xxr =  The Jacobian is w and the joint density 

of w and r is 
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Integrating out the dummy variable, w, and letting ,nrwu θ=  the 
density of nijR  is 
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which is free of both nm  and .nθ  

The expectation of nijR  is finite iff ,2≥i  which produces a classic 

strong law. 

Theorem 1. If ( )inX  and ( )jnX  are two order statistics from a uniform 

( )nθ,0  distribution with ij >  and sample size ,nm  then for all 2≥i  
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Proof. All we need to do is establish the expected value of .nijR  Let 

ru 1=  
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which concludes this proof.  

Next, we need to explore what happens when .1=i  In this situation, 
the expectation is infinite, but barely for all j. 

Theorem 2. If ( )1nX  and ( )jnX  are two order statistics from a 

uniform ( )nθ,0  distribution with sample size ,nm  then for all 2≥j  and 
2−>α  
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Proof. This is an “exact strong laws”. Our random variable jnR 1  has 

the following density: 
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Thus, 
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Using Example 2 from Adler [1], the conclusion is immediate.  

The conclusion of both theorems are free of the sample size, ,nm  and 

also our parameter, ,nθ  which is not the case for our next distribution. If 

the parameter does not disappear when we let ,∞→N  then we can use 
these results to obtain an estimator, based on these strong laws. It needs 
to be repeated that in all cases of our uniform distribution a strong law 
does exist and that the distribution of jnR 1  is similar for all .2≥j  All of 

those distributions have infinite mean, but barely. 

3. Particular Beta Distribution 

In this section, the underlying distribution is ( ) ( ),101 ≤≤= − xIaxxf a  
which belongs to the Beta family of densities. The uniform is a Beta 
“stretched” from ( )θ,0  to ( ).1,0  The final result here is quite different 
from those in Section 2. The sample size once again disappears from the 
distribution of ,nijR  but the parameter in this family doesn’t. That allows 

us to estimate this unknown constant, a. Also, there are three different 
cases here. They all depend on the magnitude of ai. Once again, we start 
with the joint distribution of our order statistics, ( )inX  and ( ),jnX  where 

nmji ≤<≤1  
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Next, let ixw =  and .ij xxr =  The Jacobian is w and the joint density 

of w and r is 
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Integrating out the dummy variable, w, and letting ,rwu =  then 

,aux =  the density of nijR  is 
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Next, we observe the value of ai. If ,1<ai  then no strong law can be 

established. In that situation, we will just need to increase which smaller 
order statistic we select, ( ),inX  so that .1≥ai  If ,1>ai  then a classic 

strong law exists. 

Theorem 3. Let ( )inX  and ( )jnX  be two order statistics from our Beta 

distribution with ij >  and sample size .nm  If ,1>ai  then 
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Proof. Once again, all we need to do is establish the expected value 

of .nijR  Let ,aru =  then ux 1=  
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which is finite since ,1>> aiaj  which implies that both aj 1−  and 

ai 1−  are positive, concluding this proof.  

Theorem 3 allows us to estimate the parameter a by resampling the 
ratio of various order statistics from our data. In Theorem 4, we obtain 
an “exact strong laws” when .1=ai  And even though ( ) ∞=nijRE  a 

strong law still exists. 

Theorem 4. Let ( )inX  and ( )jnX  be two order statistics from our Beta 

distribution with ij >  and sample size .nm  If ,1=ai  then for all 
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Proof. Once again, we quote Example 2 from Adler [1] 
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The last term is the important one. Using ,1=ai  

( )
( ) ( )

( ) ( )
( ) ( ) drriji

jaxdrriji
jax aaiajaja

x
ijaaja

x
−−+−−

∞
−−+−−

∞

∫∫ −−−
−=

−−−
− 111

!1!1
!1

!1!1
!1  

( )
( ) drriji

jaix ai
x

1
!1!

!1 −−
∞

∫−−
−=  

( )
( ) drriji

jx
x

2
!1!

!1 −
∞

∫−−
−=  

.
1






 −

=
i

j
 

As for the other terms in our series 
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So, we have 
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which allows us to obtain an “exact strong laws” via Example 2 from 
Adler [1].  

We can use either Theorem 3 or Theorem 4 to estimate the parameter 
a. But it is better to use Theorem 3 since the partial sums in Theorem 4 
converges very slowly. Using Theorem 3 and adjacent order statistics, 

,1−= ji  we have 

( )

( ) .surelyalmost11

1lim 11

aj

j
N
X
X

jn

jnN

n

N −−

−=−=

∞→

∑
 

Set ( ) ( ).11
1

−=
− ∑= jnjn

N
njN XXNL  We have jNL  converging to 

( ) ( ).111 ajj −−−  Solving for a, we have as a natural estimator of our 

parameter ( ) ( ) ,11 −− jN

jN
Lj

L
 for all .,,2 nmj …=  Next, we sum over all j, 

which leads to 

( ) ( ) ,11
ˆ

2
−−

= ∑
= jN

jN
m

j
N Lj

L
a  

as a viable estimator of a. This is the type of estimator that was proved 
successful in Adler and Skountrianos [2]. In that paper, we resampled 
over and over again and then averaged over all those samples to obtain a 
very powerful estimator of the parameter. Likewise, we can average over 
more pairs of ratios of order statistics by looking at non-adjacent pairings 
to develop a more complex estimator of a. Also, we can use Theorem 4 to 

estimate the parameter a. The limit in Theorem 4 is ( ),2
1

+α

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
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with 1=ai  we can solve for .1 ia =  However, the partial sums in these 

theorems converge very slowly, hence it takes too many observations in 
order to get a good estimator. That is why, it is better to use a classic 
strong law instead on an “exact strong laws” when running these 
simulations. 

4. The Normal Distribution 

Now for something completely different. In this section, we use 
differences of our order statistics to estimate the standard deviation from 
a normal distribution. Here we stick to a fixed sample size of .2=m  Our 
random variables are 1nX  and ,2nX  which are independent and 

identically distributed ( )., 2σµnN  The mean can vary from data set to 

data set, but not the variance. The statistic we pivot on will be 

( ) ( ),12 nnn XXS −=  which is the difference between the minimum and 

maximum of each data set and from this statistic we can estimate .σ  
This statistic is also known as the range. In order to obtain the 
distribution of ,nS  we need the joint density of our two order statistics 
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Integrating out the dummy variable, w and completing the square, the 
density of nS  is 
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which is free of the parameter .nµ  This allows us to change the mean 

from sample to sample, if we choose to. The expected value of our random 

variable nS  is ,2
π
σ  which is easy to calculate. Thus our estimate of σ  is 

.2
ˆ 1

N

Sn
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n
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And as we did in Adler and Skountrianos [2], we can now estimate the 
standard deviation in a normal distribution by resampling these pairs of 
order statistics. In that paper, we reshuffle our original data to create 
more and more pairs of order statistics to obtain a very powerful 
estimator of our parameter. 
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