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Abstract

Given criteria on differentiable functions for inequalities between a function
value calculated on two quasi-arithmetic means and the quasi-arithmetic mean
calculating on function values of two variables are enlarged for a case of three
quasi-arithmetic means and functions of three variables. Special investigations

are analyzed in additional and multiplicative cases.
1. Introduction

The quasi-arithmetic mean in discrete instance is defined for a continuous

and monotone function ¢ : J, < R — R, sentence (x) = (xq,..., x,,) and a
n
probability weight sentence (a) = (qq, ..., a,,) with Zak =1 by the
k=1
formula
n
My(x; a) = o'| > arolxy)| (L.1)
=1
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For continuous and monotone functions v : y = R and p:J, > R that
are defined on intervals /,, J, < R, for sentences =1, ...» ) Jy
and (2) = (2, ..., 2,)  J,, using a function f:J, xJ, xJ, > R, we

will consider the inequality between three quasi-arithmetic means and

quasi-arithmetic mean defined by the values of f(x, v, z):
f(My(x; a), My(y; @), My(2; @) > M, (f(x, y, 2); a). (1.2)
Fundamental function required for assaying conditions is

H(s, t, r) = xf(9(s), v (2), p (1), (1.3)
where s = ¢(x), t = ¥(y), and r = p(z).

Relationship between inequality (1.2) and function (1.3) is given in

the next lemma.
Lemma 1.1. The inequality (1.2) holds in the case that function
H(s, r, t) is concave and 7y increases or in the case that function

H(s, r, t) is convex and 7 decreases.

The opposite inequality is arising when H is convex and vy increases

and H is concave and 7y decreases.

Proof. Suppose H(s, t, r) is concave and y increases. Then x_l

increases too. Concavity gives

n n n n

H Zaisi, Zaiti, Zairi > ZaiH(si, t;, I”i).

=1 =1 i=1 i=1
Use definitions (1.3) and (1.1). Then apply X_l on the both sides and
obtain (1.2). Other cases are similarly provable.

Taylor queue, for at least twice differentiable functions, is

giving a concavity characterization considering the second differential

d?H(ds, dt, dr) as a quadratic form in (ds, d¢, dr) :
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d?H(ds, dt, dr) = Hyds? + H,,dt® + H,,dr? + 2H ,,dsdt
+ 2H,,dsdr + 2H ,drdt. (1.4)

The well-known facts are following in the next lemma.

Lemma 1.2. Suppose that function defined by (1.3) has continuous

second partial derivatives. Function H(s, t, r) is concave if the form (1.4)

is negative semidefinite. The form (1.4) is negative definite if and only if

Hss Hst Hsr
Hss Hst
H, <0, > 0, and |Hy H, H,|<o. (1.5)
Hst Htt
H H H

rs rt r

Function H(s, t, r) is convex if the form (1.4) is positive semidefinite. The

form is positive semidefinite if the all determinants in (1.5) are greater or

equal than zero.
2. Additive and Multiplicative Case

Inequality
f(My(x; @), My(y; @) 2 M, (f(x, y); a) 2.1)

was investigated by Beck in [9] for additive case, where f(x, y) = x +y
and multiplicative case with f(x, y) = xy. In this section, we enlarged
this cases on three variables for differentiable functions considering (1.5)
for (1.4).

2.1. Additive case

The observed function in (1.2) is f(x, y,2)=x+y+2z Given
functions are ¢(x) = s, ¥(y) = ¢, p(z) = r, and y(u)=w with u=x+y + 2.

Basic research are carried out by the function (1.3) in the shape of

H(s, t,1) = x(0” (s) + 071 (8) + p () (2.2)
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Auxiliary functions introduced for shorter expressions are

Fi(x) = %, Fy(y) = %, Fs(z) = %, and Fy(u) = ;L((Z))

(2.3)
Appreciating (2.3), we express the next two theorems.

Theorem 2.1. Suppose that the functions ¢, ¥, p, and ¥ have second
derivatives and functions F;,i1 =1, 2,3 from (2.3) are definable on the
intervals J,,dJ,,dJ,, and J,. For the queues (x)e dJ,,(y)ed,,
(2) € J,, and (x) + (y) + (2) € J,,, the inequality

M, (x; a)+ My(y; @)+ My(z; a) > M, (x + y + 2; a), (2.4)
is valid if
() all F;,i=1,2, 84 are positive and F(x)+ Fy(y)+ F3(z) <
Fy(x + y + 2);

(1) or if Fy is negative, but F;, i =1, 2, 3 are positive.
4 i

The inequality is opposite if

(i) all F;,i=1,2,3,4 are negative and Fj(x)+ Fo(y)+ F5(z) >
Fy(x +y+ 2);

@iv) or if Fy is positive, but all F;, 1 =1, 2, 3 are negative.

Proof. Examining the conditions (1.5) for the (1.3) in the case
flx, y,2)=x+y+z:

H(s, t,r) = 1(e () + 07" (@) + 7' (7). (2.5)

2 ’ " "
The first condition from (1.5) gives oH L(X—, - (L,j < 0, which is

fulfilled in the terms (2.3) if and only if

(L1
x (F4 Fl) =0 26
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Second condition, after calculating the derivatives and determinant
calculation gives

! " " ’ " ”n "2 12 72
X (X 9\ x (X _¥)_ X >0|.(pw
2\ 0" T o) 2 Uy 0 =

0 x [0} w x w’ rzw/2 XI2
" " " 117” n2
(£ oey 2,
X ¢ X 14 X'2

11ttt 1, 2.
R, BB Py B0 @7)

Third condition in additive case after derivatives is

A r
o2\ 9 vy’ o'p'
i x (X_ - W_") x| <o.
Ve’ p2\x v v'p’
i - v (X_ - P_")
o'p' v'p’ p2\x P

Elementary transformations and extractions gives

’ 3 " " ” " n 14 n ” ” n 14
ﬁ[X_V’_P_JFX_‘LP_JFX_W_‘L_‘LW_P_} <0
P e

! ’ ’ ’ ! ! ’

X v P e v oy p

Condition in the terms of (2.3) is

Fy, Fy F3 F, F| F3 +F_4F2?1_?1F2F3

'3(LLL+111 11 1 111)30 ©.8)

According to the Lemma 1.1, the inequality (2.4) holds if ¥’ > 0 and H in
(2.5) is concave. It is fulfilled when (i) or (ii) appears. If ' < 0, then H
must be convex. It is fulfilled again when (i) or (i1) appears, because all

inequalities in (2.6), (2.7), and (2.8) must be greater than zero.

The proof of the opposite is similar, so it is wasted to reader. O
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2.2, Multiplicative case

Enlargement on three variables in multiplicative case needs
f(x, ¥, 2) = xyz in (1.2) and now y(u) = w with u = xyz. Basic research
are carried out by the function (1.3) in the shape of

H(s, t, ) = x(o7'(s)- 071 (2)- p (7)) (2.9)

Suitable auxiliary functions are

N N
b = o rze @ P2V = 5+ 29T 7o @)

and D, (u) = % (2.10)

Inequality is based on concavity or convexity of the function (2.9).

Theorem 2.2. Suppose that x, y, z are positive and suppose that
0, ¥, p, and . have up to second derivatives such that D; from (2.10) are
definable. Then the inequality

My(x; a)- My(y; a)- My(z; a) 2 M, (xyz; a) (2.11)

holds if

() all D;,i=1,2,38,4 are positive and Dy(xyz) > Dy(x)+ Dy(y) +
Ds(2);

(ii) or if D, is negative, but all D;, i =1, 2, 3 are positive.

The inequality is opposite if

(i) if all D;, i =1, 2, 3, 4 are negative and D4 (xyz) < Dy(x)+ Dy(y)
+ Ds3(2);

(iv) or if Dy is positive, but all D;, i =1, 2, 3 are negative.

Proof. The first condition from (1.5), accepting the (2.10) is

2 ’ " " '

05> x¢'2 ¢ x¢'? Dy Dy
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Second condition is positive determinant

(L) 2 1
xg2 \ Dy Dy ¢y Dy 0
/A xzy, (L_Lj o
0'y Dy yp2 Dy Dy
equivalent with
1 1 1 1 1 1
- 22 . 2.1
Dy Dy Dy Dy Dy Dy @19
Third condition in the terms of (2.10) is
yzx’(L_Lj 2y 1 1
x¢2\ Dy Dy 0V Dy 9'p" Dy
1 xzy, (L_Lj X 1 <0
¢y Dy yp2\ Dy Dy v'p' Dy o
o1 ol 1 1 (L _ Lj
¢'p" Dy v'p' Dy zp'2\ Dy Ds

Extractions and elementary transformations simplify the determinant

obtaining the condition

11 1 1
D, D D, D,
'3 1 1 <
x ) D, 0 1=0,
1 1
Dy 0 N

equivalent with

(1 1 1 1 1 1 1 1 1 1 1 1}
(sz Dy Dy ’ D, Dy D3 ’ Dy Dy Dy Dy Dy D3) =0 @19

Discussions is analogue with discussion obtained in the proof of Theorem

2.1, so it is left to reader. O
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3. Applications
Ordinary well-known Minkowski and Hélder inequality from [1] now
1s going to be generalized and enlarged.
3.1. Generalized Minkowski inequality

Well-known inequality now is generalized and enlarged for the case

of three variables and for different potential means. For the inequality
1 1 1 1
n i n v n n n N Py
Za’ixlH + Zaiyly + Zaizp > Zai(xi + ¥ +2; ) , (3.1)
i=1 =1 i=1 =1
four auxiliary functions are appearing according to the (2.3)

Fy(x) = H—l’F2(y) u—1’F3(2) n—l’and Fy(x+y+2)

X+y+z

A—1
The inequality (3.1) holds if A <1 and w,v,n>1. Ifall p, v, n, A >1,
the (3.1) holds if

x+yt+z X y ,_Z

> . 3.2
n-1 ~n-1 v-1'm-1 (3.2)

The inequality (3.2) holds, if one of the following is fulfilled:

e when u, v, n > A > 1 for every positive x, y, z;

e when v, n > A > p > 1, under the condition by the components

p—-1(v-2»x n—-»A
0 < ;
= X—u(v—l“wn—lz)’

e when p > A > v, n > 1, under the condition by the components

pn-1(A-v _ A-n
> 0.
x H—k(v—1y+ﬂ—12)>

The inequality in (3.1) is opposite if A >1 and p, v, n < 1. If all y, v, n,
A < 1, the opposite inequality in (3.1) holds, if



CRITERIA ENLARGEMENT FOR AN INEQUALITY ... 25

x+y+z X y z

< + + .
A—-1 p-1 v-1 n-1

(3.3)

The inequality (3.3) holds, if one of the following is fulfilled:

e when u, v, 1 < A for every positive x, y, z;

’

e when v, N < A < u < 1, under the condition by the components

l-p(A-v_ A-n
0<x< ;
D (1—vy+1—n2j’

e when p < A < v, 1 < 1, under the condition by the components

l-p(v-»A n—»xa
>
x > k—u(l—vy+1—n2)>0'

3.2. Generalized Holder inequality

An enlargement of generalization given in [9] is presented as the
inequality

[Zn:aixl”]“ '{iaiﬁju '{i%‘z?]n 2 [Zn:ai(xiyizi )Jk- (3.4)

1=1 =1 =1

=1

The suitable auxiliary functions are now constants with given exponets
1

as their values D (x) = %, Dy(y) = %, Ds(z) = e and Dy (xyz) = %

The inequality (3.4) holds if A <0 and p, v, n > 0. If nu, v, n, A > 0,
then the (3.4) holds if

1 1 1
-2+ =+
A Vo

==

The inequality in (3.4) is opposite when A >0 and p, v, n < 0. If
u, v, n, A <0 and

1
— <=+ =4
A

>

1.1
v

= |~

the inequality in (3.4) is opposite too.
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4. Comparison the Generalized Quasi-Arithmetic Means

For a non-empty set Q, the set of real-valued functions, £ = {x, x :
Q — R}, constitutes a linear space. A linear functional A : £ —» R is
entitled as positive if A(x) is positive when x € £ is getting positive
values. A positive linear functional is entitled as linear mean if A(e) =1

whenever e : Q — {1}.

For a real-valued function ¢ and a positive (weight) function a € L,

the generalized quasi-arithmetic mean

My(x, a; A) = @1(%), (4.1)

is well defined if ¢(x) € £ and if ¢ is continuous and strictly monotone

on the real-number interval J, with x(Q) < «/,.. Obligatory A(a) = 0.

Note that definition (1.1) is a special case of (4.1) for Q = {1, 2,...,n},
n

x(w)=x, €dy, J, <R, 0:J, > R, a(w) =a, =0, with Zaw =1
o=l

and A(a) = Z a(o).

0eQ)

Lemma 4.1. Suppose that o, v, p and 7y are continuous, strictly
monotone real functions defined on the real intervals J,, Sy, Jzs and

J,. From (1.2), the inequality
wW(f(My(x; a), My(y; a), My(z; @) - 0(M,(f(x, ¥, 2); @)) 20, (4.2)

holds if the function H defined by (1.3) is concave and v increases or if H
is convex and y decreases. The values are well defined for y, z € L if
yQ)c dJy, 2Q) cdJ, and if f:d, xJyxdJ, > J,. The inequality is
opposite if H is convex and 7y increases or if the H is concave and H

decreases.
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Proof. Analogue to the proof of Lemma 1.1. O

On the left side in (4.2) is a difference that can be observed in
dependence of non-negative function a € £. In [4], the authors
considered relationship between two differences that arise by non-

negative (weight) functions a, b € £. The next proposition is a corollary

of the general Theorem 3.2 in [4]. The proof is given in spite of easier

understanding.

Proposition 4.1. Take the values and functions from Lemma 4.1 and
assume that A is a linear, positive functional on L. Suppose that for the

two given non-negative functions a, b € L there exist constants m, M
such that Mb(o) - a(w) > 0 and a(w) — mb(w) > 0 hold for every w € Q.
If the function H defined by (1.3) is concave, then

MA®b) - [x(f(My(x, b5 A), My(y, by A), M (2, b; A))) - x(M,(f(x, v, 2), b; A))]
> Ala) - [x(f(My(x, a; A), My(y, a; A), M,(2, a; A))) = x(M,(f(x,y, 2), a; A))]
> mAD) - [1(f(My(x,b; A), My(y, b; A), M, (2, b; A))) = (M, (f(x,, 2), b; A))].

(4.3)

The inequalities are reversed whether if the function H is convex.

Proof. For any non-negative a € £, a positive linear functional

A(ax)
7 A()

is a linear mean on £ if A(a)# 0. Jessen’s and McShane’s

generalizations of the Jensen’s inequality (see [1, p. 48-49]), for a concave

Abs) A(bt) A(br)
A() " A®D) A(b)j' By

shortcut 7' := (s, ¢, r) and A(bT) = (A(bs), A(bt), A(br)), we use concavity

function H, gives A(bH(s,t, 1)) < A(b)H(

of H. Note that only m and M are constants here and assume all

denominators differ from zero.
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MAMH(T)) - A(aH(T)) + A(a)H (Aﬁf)))

< A(Mb - )H (%) + A(Q)H (AﬁaT))) (4.4)

< MA(b)H(m(b]@lzb?(aT) + ‘J“‘gégj = MA(b)H(AX()Z;)) (4.5)

Further steps are based on definitions (1.3) and (4.1), because

A(H(T)) - A(@)H (Aﬁcg)j

- [ Aol n D) yf o Sfed) o 4, (e

o (A o (00 A0 5]

Extend A(bH(T))-A(b)H (AXZZ; )) in similarly manner, multiply (4.4)
and (4.5) by (-1) and (4.3) will be obtained. O

In the next two corollaries, the extensions of the multiplicative type
inequality and the additive type inequality investigating in [9] and [4]
are given.

Corollary 4.1. Substitute f(x, y, z) = x +y +z in Proposition 4.1
and assume that for o, v, p, and y, we can define F;,i=1,2,3,4 by

(2.3). Under presumptions of Proposition 4.1, the inequalities

MAD) - [1(My(x, b; A)+ My(y, b; A) + M (2, by A)) = x(M,(x + y + 2, b; A))]
> Aa)- [x(My(x, a; A) + My(y, a; A)+ M (2, a5 A)) = (M, (x + y + 2, a; A))]
> mA®) - [1(My(x, b, A) + My (y, by A)+ M (2,b; A)) = (M, (x + y + 2, b A))]

"

hold if y', F, Fy, Fy are positive and y" is negative or if all of y', %",

F,, Fy, F3 are positive and Fy(x)+ Fo(y)+ F3(z) < Fy(y + y+2). If '
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is negative, then inequalities (4.6) hold when ", Fy, Fy, F3 are negative
or when " is positive, Fy, Fy, F3 are negative and F(x)+ Fy(y)+ F5(2)

> Fy(y +y+2).

The inequalities (4.6) are opposite if y', x" are positive and Fy, Fy,
F3 are negative or if y' is positive, all of y", F1, Fy, F3 are negative and
Fi(x)+ Fy(y) + F3(z) > Fy(x + y + 2). If ¥’ is negative, then inequalities
in (4.6) are opposite when y", Fj, Fy, F3 are positive or when y" is
negative, Fy, Fy, F3 are positive and Fy(x)+ Fy(y)+ F3(z) < Fy(x + y + 2).

Proof. For inequalities (4.6), check the conditions (2.6), (2.7), and
(2.8). For the opposite inequalities, take all conditions to be greater than
Zero. O

Corollary 4.2. Substitute f(x, y, z) = x - y - z in Proposition 4.1 and
assume that functions x, y, z are positive. Presume that for ¢, v', p and
x the functions D;,i=1,2,3,4 are definable by (2.10). Under the

conditions of Proposition 4.1, the inequalities

MA(®b) - [(My(x, by A)- My(y, b; A)- M (2, by A)) = (M, (x -y - 2, by A))]
> Aa)- [x(My(x,a; A)- My(y, a3 A)- M(2,0; A)) = (M, (x - y - 2, a; A))]

> mA(b) - [e(M(x,bi A)- My(y, b5 A)- My(.b; A))~ (M, (x - y- 2, bi A))]
hold if y', Dy, Dy, D3 are positive and D, is negative or if all of
v's Dy, Dy, D3, Dy are positive and D;(x)+ Dy(y) + D3(2) < Dy(xyz). If
¥’ is negative, then inequalities (4.6) hold when Dy, Dy, D3 are negative
and D, is positive or when all Dy, Dy, D3, D, are negative and Dy(x) +
Dy(y) + D3(2) = Dy(xyz).

The inequalities (4.6) are opposite if ', Dy are positive and
Dy, Dy, Dy are negative or if ' is positive, all of Dy, Dy, D3, Dy are

negative and Dj(x)+ Do(y)+ Dg(z) = Dy(xyz). If %' is negative, then
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inequalities in (4.6) are opposite when Dy, Dy, D3 are positive and D, is
negative or when all Dy, Dy, Dg, Dy are positive and D;(x)+ Dy(y) +
D3(2) < Dy(xyz).

Proof. Analogue to the proof of Corollary 4.1, but the conditions
(2.12), (2.13), and (2.14) are examined now. O

5. Examples and Discussions

The results of Corollaries 4.1 and 4.2 are applied on concrete quasi-

arithmetic means. In the next example, the potential means

A(ax")
A(a)

1
“ . . . . .
are considered in multiplicative case.

M[“](x, a; A) = (

Example 5.1. Assume that a, b, M, m, A are as in Proposition 4.1.

For positive real functions x, y, z € £, the inequalities

LT
A(bz" |1
{ A(b)j - A ())

< |=

A ) [Aby")
MA®): ( A) j ( A®) J

1 A

> Ala). [AXZZ;)J“{AXZZ;)JU'[Aﬁﬁj; J CAa-(2)) G

A

= miaor |40 (4G50 {27 | -0 wehp o

hold in the following cases:

@Ifwv,m A >0 and & >

x_ +

< =

+

= |~
S|~

(i1) When p, v, n, A < 0 and

>
IA
= |~
+
< =
S|
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The inequalities (5.1) are opposite in the following cases:
@) Ifr<0<p v,
(iv) When p, v, 1 < 0 < A.

Proof. The conditions are following directly from Corollary 4.2, after

A
11 1
considering that for the function H(s,t, r) = [s“t“r”} , we have

D, = %, Dy = %, Dy = %, D, = %, and y'(xyz) = x(xyz)k_l. Checking

the conditions (2.12), (2.13), and (2.14), we obtain that H is concave in (1),
(i1) or (i11). Changing conditions (2.12) and (2.14) into greater than zero,

we obtain that H is convex when (iii) or (iv) appear. O
Similar example is constructed for additive case in the next example.

Example 5.2. Assume that a, b, M, m, A are as in Proposition 4.1.

For positive real functions x, y, z € £, the inequalities

A

e R R s
1 1 1P
- o | (45 (e | | e st
(5.2)
1 1 17
> miA(®b)- [Aﬁf(’g;)J” +[Ag’é) )j” +[A[§l(’§;j“ CAGb-(x+y+2l)lso,

hold in the following cases:

OIfyv,n>1>7i>0.
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(i) When p, v, m, 2 > 1 and =22 > “f1+vfl+nfl, which

is valid when (3.2) is valid.

(iii) When p, v, <1, 4 <0 and xiffzﬁufﬁﬂﬁni’

which is valid when (3.3) is valid.
The inequalities (5.2) are opposite in the following cases:
W) IfX>1>p,v,n.

(v) When L <0 and 1 <y, v, n.

x+y+z X y z

(vi) When p,v,nm<1,0<A <1 and . H—1+V—1+ﬂ—1’

which is valid when (3.3) is valid.

Proof. The conditions are following directly from Corollary 4.2, after

A
1 1 1
considering that for the function H(s.t,r)= (3“ +tv + r"} , we have

* F=—2_ FR=—2_F =

X x+y+z
u-1’ v-1’ n-1’

F = A1

, and y'(x+y+2)=

Mx +y+ 2)7‘_1. Checking the conditions (2.6), (2.7), and (2.8), we obtain

that H is concave in (i), (i1) or (iii). Changing conditions (2.6) and (2.8)
into greater than zero, we obtain that H is convex when (iv), (v) or (vi)

appears. O

Example 5.3. Let a, b, A, M, m be defined as in Corollary 4.1. Let

assume that x, y, z € L such that the next inequalities

A(b - cos x) + Are cos A(b - cos y)

M{A(b) - cos [Arc cos 0 AD)

+ Arc cos W} — A(bcos(x + y + Z))}
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< A(a) - cos [Arc cos Ala - cos x) + Arc cos Ala - cos y) + Arc cos M}

Afa) A(a) A(a)
— A(acos(x +y +2))

A(b - cos x) + Are cos A(b - cos y)

< m{A(b) - cos [Arc cos A) A(b)

A(b - cos z)

+ Arc cos Tb)} — A(bcos(x + y + 2))}

holds if for all ® € Q, 0 < x(0), y(0), 2(0) < % If 0 > x(0), (o), 2(o) >
- % for all o € Q, then the inequalities are reversed.

Proof. For the functions y(x)= ¢(x)=p(x) = p(x) = cosx, we can
apply Corollary 4.1 in the case that y'y" is negative, Fj, Fy, F3 are
positive and Fj(x) + Fy(y) + F3(2) < Fy(x + ¥y + z). Namely, '(x + y + 2)

=-sin(x +y+2)<0 and y"(x+y+2z)=-cos(x+y+2z)<0, because

O<x+y+z< g Furthermore, Fj(x) = Fy(x) = F3(x) = tanx > 0 and

tanx + tan y + tanz < tan(x + y + z) for O<x,y,z<%. So the

inequalities are true. The proof of the opposite is analogue and it is left to

a reader. O

In the next remarks, we notice that well-known inequalities are the
border cases of the examples given above. The terms a, b, A, M, m are
defined as in Corollary 4.1.

Remark 5.1. Assume that f(x, y, z) =x +y+2z and y(x) = o(x) =

1 1 1
¥(x) = p(x) = x* in (1.2). Then H(s. t, r) = (s* +t* +r* )" in (1.3).

If 0<pu<1, then Example 5.2 implies the Minkowski type

inequalities for positive functions x, y, z € L :

MA®) - [(MM(x + y + 2, b; A — (MM (x, b; A)+ MWy, by A) + MWz, b; A ]
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> Ala) [(MM(x + y + 2,0 AWM — (MM (x, @ A) + MM(y, a; A) + MMz, a3 A
> mA®) - [(MM(x + y + 2,0, AW — (MM (x, b; A) + MMy, b; 4) + MWz, b; A)].

If p >1 orif p < 0, then the inequalities are reversed.

Remark 5.2. Assume that f(x, y, z) = xyz, x(x) = x and o(x) = x*,

1 1 1

v(y) = Y, p(z) = 2". Then H(s,t,r) = (sE Stv ~r;) in (1.3). If p,v,n > 0

and 1 + % + % =1, then Example 5.1 implies Holder type of inequalities
1)

for positive functions x, y, z € L:

MA®) - [MU(ayz, by A)- MW, b; 4)- MUy, b; 4)- MUz, b; 4)]
< Ala)- [MM(xyz, a; A) - MWM(x, a; A)- MMy, a@; A) MUz, a; A)]
< mA®) - [MM(xyz, b; A) - MM (x, b; A)- M)y, b; A)- MUYz, b; A)].
If u, v, 1 < 0, then the inequalities are reversed.

Theorems 2.1, 2.2, Proposition 4.1, and Example 5.1 are the
refinements of Theorems 4.1 and 4.31 and Corollaries 4.33 and 4.34,

respectively, from [1].
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