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Abstract 

In this article, the generalized fourth-order Hirota-Satsuma partial differential 
equation coupled with KdV system is investigated by using the tanh method. In 
this method, by choosing an independent variable, the Hirota Satsuma partial 
differential equations (PDEs) change into ordinary differential equations 
(ODEs). These equations have been solved and the soliton solutions are 
obtained. 
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1. Introduction 

Research on solitary waves and soliton solutions, was first conducted 
by Russell John Scott (1808-1882) when he followed the path of a solitary 
wave at a canal [1]. To define the soliton, it can not be considered as a 
singular meaning. Solutions of nonlinear wave equations which have the 
following three properties are called soliton: 

(1) Their shape and velocity are not changed. 

(2) Is confined in a region of space. 

(3) After the collision with other solitons, its shape is preserved. 

Answers that include the first property, have been called solitary 
waves. Inherent stability of solitons, enable them to be sent over long 
distances without the use of repeaters and could potentially double 
transmission capacity. Soliton waves are quite stable, and in case of 
disturbance continue to move to its initial state. 

After Scott, more than a century, the solitons were not heeded. Then 
in 1965, Norman Zabvsky, from Bell Lab and Martin Kruskal of 
Princeton University, who described the behaviour of solitons in the form 
of mathematics. Since then, gradually, solitons were used not only to 
describe water waves, but also in other fields of physics that deal with 
the wave and showed excellent performance [2]. 

Nonlinear partial differential equations (PDEs) in different scientific 
fields such as fluid mechanics, solid state physics, plasma physics, 
chemical physics [3], and so on are of high importance. Completely 
integrable nonlinear partial differential equations (PDEs) model 
physically interesting wave phenomena in reaction-diffusion systems, 
population and molecular dynamics, nonlinear networks, chemical 
reactions, and waves in material science [4]. Finding exact responses to 
these equations will help us to better understanding of our 
environmental nonlinear physical phenomena. For most nonlinear partial 
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differential equations, soliton solutions can be defined. One of these 
equations is nonlinear equation of generalized Hirota-Satsuma coupled 
with a KdV system, which will be shown below: 

( ) ,334
1 2

xxxxxt wvuuuu +−++=  (1) 

,32
1

xxxxt uvvv −−=  (2) 

.32
1

xxxxt uwww −−=  (3) 

The discussed generalized Hirota-Satsuma coupled KdV equations 
have been studied by many authors via different approaches. Recently, 
Fan [5] has provided a suggestion to construct soliton solutions for 
Equations (1), (2), and (3) by using an extended tanh-function method 
and symbolic computation. The main idea of this method is to take full 
advantage of a Riccati equation involving a parameter and to use its 
solutions to replace the tanh-function method. Following him, Jacobi 
elliptic function method by Yu et al. [6], the projective Riccati equations 
method by Yong and Zhang [7], the algebraic method by Zayed et al. [8], 
variational iteration method by He and Wu [9] and Assas [10], Adomians 
decomposition method by Kaya [11] and Raslan [12], homotopy 
perturbation method by Ganji and Rafei [13], homotopy analysis method 
by Abbasbandy [14], homogeneous balance method by Yong et al. [15], 
Jacobian and rational methods by Zayed et al. [16], and the trigonometric 
function transform method by Cao et al. [17]. 

If in Equation (1), w does not depend on x and t, then ,0=xw  

.0=tw  In fact, the above mentioned equations are transformed into the 

following equations: 
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Equations (4) and (5) describe an interaction of two long waves with 
different dispersion relations [18]. For such a special behaviour, what we 
mention here is that some coupled nonlinear systems usually exhibit 
special interesting dynamics. For example, the Hirota-Satsuma equation, 
which has two potential functions, u and v. The main potential u admits 
a sudden shift in scattering, and this invisible interaction is considered to 
be caused by another potential v [19]. 

In this article, we solve the fourth-order of this equation, which is 
defined as follows: 

,634
1

xxxxxxxxxt vvuuuuu −++=  (6) 
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xxxxxxxxt uvvvv ++=  (7) 

That ( )txu ,  and ( )txv ,  are solutions of the above equations in one space 

and time dimension, namely, ( )11 +  dimensions and; ( ) =txut ,  
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Of course, there are different methods for finding soliton solutions of 
Equations (6) and (7). Some of these methods include: 

(1) Backlund transformation [20]. 

(2) Darboux transformation [21]. 

(3) Tanh-function [22, 23]. 

(4) Extended tanh-function [24]. 

(5) Sine-cosine [25]. 

(6) Lie group analysis [26] and so on. In this article, the tanh-function 
method is used. 
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2. Tanh Method 

In this section, we find analytical solutions to Equations (6) and (7) 
by using the hyperbolic tangent method. This method is proven very well 
at finding soliton solutions because many soliton solutions can be written 
as hyperbolic tangent functions. It is necessary to remember that since 
many nonlinear equations using hyperbolic tangent method has been 
solved and studied by Wazwaz, this method is called Wazwaz method. 

The partial differential equation (6) and (7) can be converted to an 
ordinary differential equation upon using a wave variable :ctxz −=  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,0634
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That ( ) ( ) ( ) ( )zVtxvzUtxu == ,,,  [27]. 

Again, we introduce another independent variable in the form    
zy Tanh=  which will lead to derivative changes as follows [28]: 
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With substituting (10) to (13), in Equations (8) and (9), the result is 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2
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3
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4
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dy
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For a detailed response, limited extension of y is considered as following: 
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Placement of (16) and (10) to (13) in Equations (14) and (15) and embed 
the highest level of linear order with the highest level of nonlinear order, 
is determined that 

.3== NM   (17) 

With placement of these numbers in the series of Equation (16) the 
following equations are obtained: 

( ) ,3
3

2
210 yayayaayU +++=   (18) 

( ) .3
3

2
210 ybybybbyV +++=   (19) 

Then, Equations (18) and (19) and their derivatives in Equations (14) and 
(15) are inserted. If the coefficients of each power of y are added and 
equalled to zero, the following equations will be obtained: 

,0240 2
33

2
3 =−− baa   (20) 

,0287.3 323223 =−+− bbaaaa   (21) 

,02424476 2
23131

2
2123 =−−++−+ bbbaaaaaa   (22) 
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,0663324015 330213021123 =+−−++++− cabbbbaaaaaaa   (23) 

,02126631616120 220
2
120

2
1123 =+−−+++−− cabbbaaaaaa   (24) 

,021264323 11010123 =+−+−− cabaaaaa   (25) 

,040 333 =+ bab   (26) 

,09612020 322323 =−−−− babab   (27) 

,03284120 312213123 =−−−−− babababbb   (28) 

,0396338827 3302112123 =−−−−−+ cbbabababbb   (29) 

,0263168120 22011123 =+−−++− cbbababbb   (30) 

.03163 110123 =+−+−− cbbabbb   (31) 

Using Mathematica software, we can solve Equations (20) to (31), so the 
coefficients can be found as follows: 

Case 1. 

,21.414,40,365.2,63.30,37.415 03210 −=−=−=== baaaa  

.9.1214,40,43.0,1.35 321 ==−=−= cbbb  (32) 

By placing these coefficients in Equations (18) and (19) soliton solutions 
can be obtained as follows, of course zy Tanh=  and :ctxz −=  

( ) ( ) ( )txtxtxu 9.1241tanh365.29.1241tanh63.3037.415, 2
1 −−−+=  

  ( ),9.1241tanh40 3 tx −−  (33) 

( ) ( ) ( )txtxtxv 9.1241tanh43.09.1241tanh1.3521.414, 2
1 −−−−−=  

( ).9.1241tanh40 3 tx −+  (34) 

The numerical simulation of two solitons 1u  and 1v  are presented in the 

following: 
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Figure 1. ( ).,1 txu  

 

Figure 2. ( )txu ,1  when .0=t  
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Case 2. 

 

Figure 3. ( ).,1 txv  

 

Figure 4. ( )txv ,1  when .0=t  
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If it is assumed that :031 == ba  

,40,625.4,785.16 320 =−=−= aaa  

.93.94,39,265.4,23.5 210 ==== cbbb  (35) 

By placing these coefficients in Equations (18) and (19) soliton solutions 
can be obtained as follows, of course zy Tanh=  and :ctxz −=  

( ) ( ) ( ),9493tanh4093.94tanh625.4785.16, 32
2 txtxtxu −+−−−=   (36) 

( ) ( ) ( ).93.94tanh3993.94tanh265.423.5, 2
2 txtxtxv −+−+=   (37) 

The numerical simulation of two solitons 2u  and ,2v  are presented in the 

following figures: 

 

Figure 5. ( ).,2 txu  



FINDING THE EXACT SOLITON SOLUTIONS … 11

 

Figure 6. ( )txu ,2  when .0=t  

 

Figure 7. ( ).,2 txv  
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Figure 8. ( )txv ,2  when .0=t  

3. Conclusion 

The main goal in this article was, to find the soliton solutions of 
nonlinear fourth-order equation of the generalized Hirota-Satsuma 
coupled with the KdV system. ( )11 +  dimensional and hyperbolic tangent 

method that were used, since most forms of soliton equations are 
hyperbolic tangent functions, and the Mathematica software version 9 
was used for drawing figures. 
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