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Abstract 

Lévy theory provides a potential mathematical framework to model space and 
space-time stochastic processes. In addition, spatial point processes define 

stochastic models for random patterns of points in .2R  These processes play a 
special role in stochastic geometry as the building blocks of more complicated 
random set models. In this paper, we focus on a family of Lévy-based spatial 
Cox processes to model and predict tumor growth. We develop a procedure to 
simulate the growing of tumors. This algorithm can be used to study the 
evolution in time of any 2- and 3-dimensional geometrical forms such as cancer 
skin and all type of boundary evolution. We analyze real data and show that the 
procedure developed works fine and is useful for prediction purposes. 

1. Introduction 

The evolution in time of some objects is the subject of study of many 
researchers worldwide. Special attention has been given to cancer, and a 
way to understand this disease is to know how it evolves over time. 
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We can find, in reading, many studies about mathematical modelling 
of tumors; see, for example, Bramson and Griffeath [2]; Cressie [5]; Qi et 
al. [15]; Lee and Cowan [12]; Kansal et al. [11]; Barndorff-Nielsen and 
Schmiegel [1]; Jónsdóttir and Vedel Jensen [9]; and Jónsdóttir et al. [10]. 

In Richardson [16], the growth object in the plane at time t is a 

random subset tY  of 2Z  consisting of the “infected sites”, described also 

by a Markov process. An uninfected site is transferred to an infected site 
with a rate proportional to the number of infected nearest neighbours. It 
can be shown that if 0Y  consists of a single site, then tYt  has a non-

random shape as .∞→t  

Bramson and Griffeath [2] denote the set of sites occupied by cancer 

cells ,A
tξ  at time t and given that the original cancerous population ( )0

tξ  

occupies ,0SA ∈  and the processes ( ) 0≥
αξ tt  are Markov, they define for 

,0>λ  a jump (growth) rate as 

{ } ( ) { } ,1:rateat =−∈λ∈/→ xyAyAxxAA ∪  

{ } ( ) ,1rateatAxxAA ∈−→  

where Λ  is the cardinality of 0S∈Λ  and x  is the Euclidean distance 

from x to 0. This study is a extension of the stochastic model defined by 
Williams and Bjerknes [17] to accommodate expansion of cancer cells. 
That model treats each cell as normal and abnormal (cancerous) 

independently and assume that both are located in a planar lattice .2Z  
Starting with a single abnormal cell at the origin and from the 
hypothesis that abnormal cells reproduce faster that normal cells, they 
assume that with each cellular division, one daughter cell stays fixed 
while the other usurps the position of a neighbour. 

A related growth model in continuous space has been discussed in 
Deijfen [7]. For planar objects, the model is constructed from a 

spatiotemporal Poisson point process on ,3R  

( ){ }., ii tx=Ψ  
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The random growing object 2R⊂yY  is a subset of 

{ }
( ),,

:
rxB i

tti i
∪
≤

 

constructed such that tY  is always connected. Here, ( )rxB ,  is a circular 

disc with center x and radius r. In this model, it  is thought of as a time 

point of outburst and ix  as the location of the outburst in the tumor. A 

closely related discrete-time Markov growth model has been proposed by 
Cressie [5]. This model can be characterized as a sequence of Boolean 
models 

{ ( ) },:,1 tiit YxrxBY ∈=+ ∪  

where { }ix  is a homogeneous Poisson point process in ;2R  see Cressie 

and Laslett [4]; Cressie [5]; and Cressie [6]. 

In all these papers, it is obvious that the form of the cancer in the 
future depends by the edge and structure of the cancer in the past 
(function f) and also by some external factors like mitosis, nature of 
cancer (benign or malign), biological tissue density, etc (all these factors 
can be included in a function g). So, a very general growth model can be 
expressed as 

( ) .1 gYfY tt +=+   (1) 

For not complicating the model, we should refer to the cancer tumor 
just to their external edge, not to their internal structure. Then we can 
tell that the object of study can be a shape with a particular boundary of 
whose genesis is a single point. Let us study this as a point process and 
let us make some geometrical interpretations to calculate the rate 
growth. For this, it is not strictly necessary to have deterministic 
expressions of the functions f and g and make a complex model, which 
aims to offer the values of the boundary object at any instant time. We 
can calculate these values with an algorithm by observing the speed of 
expansion of the tumor, expressed as a constant velocity of vectors in 
some directions. 
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The aim of this research is to observe the dynamics of cancer tumors 
and to develop and implement new methods and algorithms for 
prediction of tumor growth. We offer some tools to help physicians for a 
better understanding and treatment of this disease. Using a prediction 
method and comparing with the real evolution, a physician can note if 
the prescribed treatment has the desired effect, and according to this, if 
necessary, to take the decision of surgically intervention. 

The plan of the paper is the following. Section 2 presents a short 
overview of the theory of Lévy bases and integration with respect to such 
bases is given, we recall standard results about spatial Cox processes, 
and finally, we propose different types of growth models. In Section 3, a 
new algorithm, the cobweb, is presented and developed based on the 
proposed methodology. The implementation in Matlab software comes in 
Section 4. Section 5 presents some real data analysis. The paper ends 
with some conclusion. 

2. Spatial Cox Point Processes 

A spatial point pattern is a set of points { }niAxi ,,1: …=∈  for 

some planar region A. Very often, A is a sampling window within a much 
larger region and it is reasonable to regard the point pattern as a partial 
realization of a stochastic planar point process, the events consisting of 
all points of the process which lie within A. 

Let N be a spatial point process that is defined on 2R  but is observed 

on a finite observation window W. For an arbitrary Borel set ,2R∈A  let 
A  and ( )AN  denote the area of A and the number of events from N that 

are in A, respectively. In some applications, it is reasonable to think of 
the spatially varying intensity function, ( )xλ  of a point process to be 

itself a realization of an underlying stochastic process ( ).xΛ  

A point process X is a Cox process if: (a) ( )xΛ  is a non-negative valued 

stochastic process; and (b) conditional on the realization of ( ),xΛ  the 

point process is an inhomogeneous Poisson process with intensity 
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function ( )xΛ  (Cox [3]). In this case, we say that X is a Cox process 

driven by .Λ  In this context, the resulting point process inherits the 
properties of the ( )xΛ  process in a natural way. 

Cox processes provide useful and frequently applied models for 
aggregated spatial point patterns, where the aggregation is due to a 
stochastic heterogeneity. Indeed, Λ  usually models this unobserved 
random heterogeneity. Shot noise Cox processes, log Gaussian Cox 
processes and log shot noise Cox processes will appear as natural 
building blocks in a modelling framework for Cox processes. 

 

2.1. Lévy-based Cox processes 

Let ( )A,Ω  be a measurable space. We assume that Ω  is a Borel 

subset of ,dR  and A  is the ring-δ  ( )ΩbB  of bounded Borel subsets of .Ω  

We consider a collection of real-valued random variables { ( ),ALL =  

}A∈A  with the following properties: 

● ( ) ( ) …… ,,,1 nALAL  are independent random variables for every 

sequence { }nA  of disjoint sets in ,A  and ( ) ( )nnnn ALAL ∑=∪  a.s. 

provided ( ).Ω∈ bnn A B∪  

● For every A in ( )AL,A  is infinitely divisible. 

If L has these properties, L is called a Lévy basis. In addition, L is a 
non-negative Lévy basis if ( ) 0≥AL  for all A�∈A  (cf. Barndorff-Nielsen 

and Schmiegel [1]). 

For a random variable X, Jónsdóttir et al. [10] denote the cumulant 

function ( )Xie νElog  by ( )., XC ν  If L is a Lévy basis, then the cumulant 

function of ( )AL  is expressed as 

( )( ) ( ) ( ) ( [ ]( )) ( ),,112
1, 1,1

2 AdrUrrieAbAaiALC ri
−−−+−= ∫ νννν ν

R
 (2) 
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where a is a additive-σ  set function on b,A  is a measure on 

( )AdrU ,,A  is a measure on A  for fixed dr and a Lévy measure on ( )RB  

for each fixed A∈A  (i.e., { }( ) 0,0 =AU  and ( ) ( ) <∫ AdrUr ,1 2
R

 ,∞  

where   denotes minimum). 

The measure U is referred to as the generalised Lévy measure and L 
is said to have the characteristic triplet ( ).,, Uba  In addition, (a) if 

,0=b  then L is called a Lévy jump basis, and (b) if ,0=U  then L is a 
Gaussian basis. A general Lévy basis L can always be written as a sum of 
a Gaussian basis and an independent Lévy jump basis. 

A particular example of a Gaussian Lévy basis is obtained by 
attaching independent Gaussian random variables { }iX  to a locally finite 

sequence { }iη  of fixed points and defining 

( ) ., A�∈= ∑
∈η

AXAL i
Ai

 

Let S  be a Borel subset of .dR  A point process X on S  is called a 
Lévy driven Cox process (LCP), if X is a Cox process with a driving field 

( ) ( ) ( ) ,,, S∈ξηηξ=ξΛ ∫Ω dLk   (3) 

where L is a non-negative Lévy basis on .Ω  

Furthermore, k  is a non-negative function on Ω×S  such that ( )⋅ξ,k  

is integrable with respect to L for each S∈ξ  and ( )η⋅,k  is integrable 

with respect to the Lebesgue measure on S  for each .Ω∈η  

Note that it is always possible for each pair ( )L,k  to construct an 

associated pair ( )L,k  generating the same driving field ,Λ  where now 

( )η⋅,k  is a probability kernel. We may simply let 

( ) ( ) ( ),,, ηαηξ=ηξ kk  
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( ) ( ) ( ),ηηα=η dLdL  

where 

( ) ( ) ., ξηξ=ηα ∫ dk
S

 

It is important to note that from the non-negativity of the Lévy basis 
L, we get that L is equivalent to a random measure on .Ω  Thus, the 

measurability of Λ  follows from the measurability of k  as a function of 
η  and .ξ  Therefore, Λ  is a well-defined random field and (under the 

condition of local integrability) the driving measure ( ) ( ),, SBbB
Bd ∈ξξΛ∫  

is also a well-defined random measure detemined by the finite-dimensional 
distributions of L. 

The function k  and the Lévy basis L will be chosen such that Λ  is 

almost surely locally integrable, i.e., ( ) ∞<ξξΛ∫ d
B

 with probability 1 for 

( ).SBbB ∈  A sufficient condition for the last property is that, cf. (Møller 

[13], Remark 5.1)  

( ) ( )SBb
B

Bd ∈∞<ξξΛ∫ ,E   (4) 

2.2. Lévy-based tumor growth modelling 

Let us denote the growing object as a planar object at time t by 

,2R∈tY  and assume that tY  is compact and star-shaped with respect to 

a point ( ) tYyxO ∈00 ,  for all t. We treat here a star-shaped object like a 

two-dimensional geometric shape and the growth model like a rigid 
transformation in time of the primary star-shaped object, defining a 
second star-shaped object that includes the boundary of the initial object. 

In geometry, two subsets of a Euclidean space have the same shape if 
one can be transformed into the other by a combination of translations, 
rotations (together also called rigid transformations), and uniform 
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scalings. Note that we talk about star-shaped that can grow its boundary 
in a random way. So, we can not say that the transformation of the initial 
star-shape object in time is a rigid transformation. 

The boundary of tY  can be determined from the variation in time t 

and direction (from angle) [ )π∈φ 2,0  of the vector ( )φtR
G

 denoted by the 

radial function, 

( ) ( ) ( ){ } [ ).2,0;sin,cos,:max 00 π∈φ∈φφ+=φ tt YryxrR   (5) 

In Figure 1, we show an example of such star-shape object noted with 

tY  and ( )φtR  is the distance from a reference point ( )00, yxO  to the 

boundary of the object. 

 

Figure 1. The star-shape object .tY  



A GEOMETRIC APPROACH TO CANCER GROWTH … 9

Jónsdóttir et al. [10] consider this as a random variable ( )σtX  

depending on time t and position σ  in space. They assume that 

( ) ,, R×=Ω∈σ St  where .nR⊆S  A Lévy-based spatio-temporal model 

for { ( ) ( ) }Ω∈σσ= tXX t ,:  is based on the ambit set ( )σtA  associated 

with each point ( ) ,, Ω∈σ t  which defines the dependency on the past at 

time t and position ,σ  and satisfies the conditions 

( ) ( ),, σ∈σ tAt  

( ) ( ]., tAt ∞−×⊆σ S  

The linear spatio-temporal Lévy model for ( ) ( ){ }Ω∈σσ= tXX t ,:  is 
defined as 

( )
( )

( ) ( ),, ξσξ=σ ∫ σ
dLfX t

A
t

t
  (6) 

where L is a Lévy basis and ( )σξ,tf  is the deterministic weight function. 
The process 

( )( ) ( ){ },,:exp Ω∈σσ= tXX t  

is said to follow an exponential spatio-temporal Lévy model. 

So, the model who describes the growth of a planar star-shaped object, 
using its radial function ( )φtR  at time t and angle ,φ  can start from the 
time derivative of the radial function equation 

( ) ( )
( )

( ) ( ) [ ),2,0;, π∈φξφξ+φµ=φ
∂
∂ ∫ σ

dLfRt t
A

tt
t

 (7) 

which is the growth rate (cf. Jónsdóttir et al. [10]). Here, L is the Lévy-basis on 
[ ) ( ) [ ) ( ]tAt ,2,0;2,0 ∞−×π⊆φ×π R  is a subset of the past of time t, called 

ambit set (Barndorff-Nielsen and Schmiegel [1]); ( ) [ ) RR →×πφ⋅ 2,0:,tf  
is a deterministic weight function (assumed to be suitable for the integral 
to exist) and the deterministic function [ ) R→πµ 2,0:t  contributes to 
the overall growth pattern while the stochastic integral determines the 
dependence structure in the growth process. 
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The ambit set ( )φtA  plays an important role in this modelling 

approach and affects the degree of dependence on the past. The extent of 
the dependence on the past may be specified by the minimal time-lag 
( )tT  such that 

( ) [ ) ( )[ ] [ ).2,0;,2,0 π∈φ−×π⊆φ ttTtAt  

The form of the ambit set ( )φtA  will depend on the specific growth 

process being modelled. For the interpretation of (7) as a growth model, 
Jónsdóttir et al. [10] represent the ambit set as a stochastic subset of the 
growing object. This is possible if the stochastic time transformation 

( )φ→ tRt  is non-decreasing for each [ ).2,0 π∈φ  They represent the 

ambit set ( )φtA  as a subset of ,tY  

( ) ( ) ( )( ) ( ) ( ){ }.,:sin,cos φ∈θθθθθ=φ tsst AsRRA   (8) 

 

Figure 2. Stochastic representation of ( ).φtA  
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It follows from the fact that ( ) [ ) ( ]tAt ,2,0 ∞−×π⊆φ  that ( )φtA  

(Figure 2) is actually a subset of .tY  Furthermore, since ( ) ( ),, φ∈φ tAt  the 

set ( )φtA  touches the boundary of tY  at the point ( ) ( )( ).sin,cos φφφφ tt RR  

It is the “events” in ( )φtA  that influence the growth rate at time t in 

direction .φ  

In the particular case where L is a Poisson basis and Ψ  is the 
associated Poisson point process on [ ) ,2,0 R×π  then the growth model 

can be written as 

( ) ( )
( )

( ),; φξ+φµ=φ
∂
∂ ∑

φΨ∈ξ
t

A
tt fRt

ti∩

 (9) 

where the parameter tΨ  of the sum is a subset of tY  

( ( ) ( ) ){ }.:sin,cos ttRR iiitiitt ii ≤θθθθ=Ψ   (10) 

Finally, if 

( )( ) ( )( ),;,;sin,cos φθ=φθθ sfssf tt   (11) 

and according to (9), the growth rate at time t in the direction φ  depends 

on the outbursts at time points before t, which lie in the stochastic 

neighbourhood ( ).φtA  Under (7), the induced model for ( )φtR  will be        

(cf. Jónsdóttir et al. [10]) of the same linear form, since 

( ) ( ) ( ) ( ) ( )dsdLfRR s
A

t
tt

s
ξφξ+φµ+φ=φ ∫∫ ;

0
0  

( ) ( ) ( ) ( ),;0 ξφξ+φµ+φ= ∫ dLfR t
A

t
t

 (12) 

where 0R  is the radial function at time ,0=t  and 

( ) ( ) ,
0

dss
t

t φµ=φµ ∫  (13) 
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( ) ( ),
0

φ=φ
≤≤

s
ts

t AA ∪  (14) 

( ) ( )( ) ( ) .;;
0

dsff sA
t

t s φξξ=φξ φ∫ 1  (15) 

Note that the ambit sets associated with the radial function itself are 
increasing, that is, 

( ) ( ).2121 φ⊆φ⇒≤ tt AAtt  

Another model proposed by Jónsdóttir et al. [10] is expressed in 
terms of the time derivative of ( )( )φtRln  

( )( )( ) ( )
( )

( ) ( ),;ln ξφξ+φµ=φ
∂
∂ ∫ φ

dLfRt t
A

tt
t

  (16) 

and the induced model is an exponential spatio-temporal Lévy model 

( ) ( ) ( )
( )

( ) ( ) .;exp0 







ξφξ+φµφ=φ ∫ φ

dLfRR t
A

tt
t

  (17) 

The choices of Lévy basis L, ambit sets ( ),φtA  weight functions 

( )φξ;tf  and ( )φµt  completely determine the growth dynamics. These four 

ingredients can be chosen arbitrarily and independently, which results in 
a great variety of different growth dynamics. 

Finally, Jónsdóttir and Vedel Jensen [9] propose a Gaussian radial 
model for star-shaped objects. The object at time 1+t  is a stochastic 
transformation of the object at time t such that the radius vector function 
of the object fulfils 

( ) ( ) ( ) [ ),2,0,1 π∈φφ+φ=φ+ ttt ZRR   (18) 

where tZ  is a cyclical Gaussian process 

( ) [ ( ) ( )],sincos ,,1
φ+φ+µ=φ ∑∞

=
kk kkk tttt BAZ  
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and assumed that the coefficients ,, ,ktt Aµ  and k,tB  are the coefficients 

of the Fourier series of ,tZ  which has an important geometric 

interpretations relating to the growth process. 

In the next section, we offer a geometric interpretation of the growth 
tumor determined by the radius tR  and angle φ  values at different 

instants of time t and we propose new algorithm to calculate the growing 
rate. 

3. Modelling Tumor Growth: A New Algorithm 

Principal questions for this subject are how fast the tumor grows, 
how rapidly does it invade and replace brain tissue, and what is the life 
expectancy of the patient? In general, tumor growth depends on the rate 
of mitosis (birth of new cells) and the rate of apoptosis (cell death). A 
tumor in which the rate of mitosis is equal to the rate of apoptosis does 
not appear to grow - it stays the same size as new tumor cells and simply 
replaces cells which die and the number of tumor cells stays the same. 

To make a prediction about tumor growth we first need data (at least 
two images) at a predetermined interval time, to see if the tumor is 
growing and what is the relative velocity. Once we have located the 
tumor, the next step is to make a second tomography and compare the 
boundary of the tumor. In Figure 3, we show a tomography of a tumor 
and its location within the brain. 
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(a) 

 
(b) 

Figure 3. Brain tumor (a) and its location (b). 

The tomography should be done in the same conditions as the 
previous image. The position of the patient must be identical so that the 
image is collected with the same cartesian coordinates as the previous 
image. The time period between two consecutive analysis is set as a 
parameter resolution .k  Prediction of tumor growth directly depends on a 
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good image acquisition. In Figure 4, we have the second image after one 
month from when the disease was discovered. With the red line the 
tumor is marked and in the right-hand picture, we consider a sample 
space like a “star-shape” delimited by the blue line. 

 
(a) 

 
(b) 

Figure 4. Second image acquisition after one month: (a) original image 
acquisition; (b) boundary of tumor (red) within the sample space (blue). 
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In Figure 5, we note the discovered tumor at time t with the yellow 
boundary, the growth tumor at time ( )days30=∆∆+ TTt  with red 
boundary, and the star-shape representing the sample space with a blue 
line. In the right-hand side, we show in black lines the vectors from the 
center of tumor to the limits of the sample space. The intersections of 
these vectors with each boundary give the value of the vector at time t, 
respectively, TTt ∆∆+ .  represents the time period between analysis 
(here one month). 

 

 

Figure 5. Superimposed images of tumor. 
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The sample space must be as large as possible, in the worst case, it 
could be the entire cranial box. But we can also assume that in a period 
of time, the tumor cannot grow over certain limits which depend on the 
structure of the brain. 

We can easily construct a sample space which includes the boundary 
of the future tumor. The form of this sample space is directly influenced 
by the shape and positioning of the brain bulbs. It is a fact that the 
tumors grow more easily in some directions, which depend on the density 
and the nature of nearby biological material. Now, we can compare the 
images to see the evolution in time of the tumor. As we can see the tumor 
tends to grow more in certain directions which can be defined with 
vectors of growth of the tumor. 

 

Figure 6. Tumor growth in star-shape. 
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In Figure 6, we graphically explain how we use the vectors j
tR
G

 to 

predict the growth of the tumor. The direction of each vector ,j
tR
G

 

nj ,,1 …=  is given by the line from the center ( )00, yxO  to each n 

inflexion of the star-shape (in this case, we consider only 7=n ). We 
denote the starting point time when we make the first tomography with 

0t  as the initial time for our computation. 

The area of the initial tumor 0tA  for a time 0t  is given by the 

boundary of the 0tY  (yellow line in Figure 6), and the area of the tumor 

TtA ∆+0  at time Tt ∆+0  (after one month) is given by the boundary of 

TtY ∆+0  (red line in Figure 6). 

Suppose that the velocity of growth is constant in time, then the 

value of the vector j
ti

R
G

 at the moment ,0 Ttti ∆α+=  represented by the 

radius ,j
ir  is given by 

( ),
0010

1 j
t

j
Tt

j
Tt

j
Tt

j
i RRRRr

i

GGGG
−+== ∆+

−
∆+∆α+ −

k  (19) 

for k,,1 …=i  and .,,1 nj …=  

The parameter α  is the period of time where upon we wish to make 
the estimation and this is given by the linear resolution 

.
α
∆= Tk  (20) 

The angular resolution represents the circle divided by the number of 
vectors, which in cylindrical coordinates, means 

.2
φ
π=n   (21) 
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In Equation (19), the final term of the right-hand side, is a constant 
defining the “length step” 

( ),
00

1 j
t

j
Tt RRl

GG
−= ∆+

−kk  

and if we write ,11
j

i
j

Tt rR
i −∆+ =
−

G
 then (19) becomes 

.1 klrr j
i

j
i += −   (22) 

We use the cylindrical coordinates to calculate the area of ( )φtA  (see 

Figure 2), which help to calculate the predicted area ( )φ∆+ TtA  of the 

tumor after a period of time. To calculate this area, we make a 
discretization of the area region ( ),φtA  in n angles njj ,,1, …=φ  and k  

radius .,,1, k…=iri  So, we split this region into k×n  surfaces. 

In Figure 7, the gray region represents the j-th rate of growing   

tumor in time ,T∆  noted here as ( ) ( )φ−φ∆+
j

t
j

Tt AA
00

 with nj ,,1 …=     

(n = angular resolution). In this case, the linear resolution is .1=k  
Therefore, the j-th portion of area at time 0t  is 

( ) ( ( ) ( )) ,cossin
00 jjj
j
t

j
t dRA

j
φφ+φ=φ ∫φ  (23) 

and the j-th portion of area at time Tt ∆+0  is 

( ) ( ( ) ( )) .cossin
00 jjj
j

Tt
j

Tt dRA
j

φφ+φ=φ ∆+φ∆+ ∫  (24) 



IULIAN T. VLAD and JORGE MATEU 20

 

Figure 7. Calculation of the growth tumor at time .Tt ∆+  

Now, we have the area of the initial tumor 

( ) ( ),
00

1
φ+ε=φ ∑

=

j
t

n

j
t AA  (25) 

and the area of the tumor from the second tomography is given by 

( ) ( ).
00

1
φ+ε=φ ∆+

=
∆+ ∑ j

Tt

n

j
Tt AA  (26) 

The area of the growth tumor after a time period is composed from 

k×n  elementary areas ( ),j
j

iA φ  and is given by 

( ) ( ),
1

0 φ+ε=φ ∑
=

∆α+
j

t
i

Tt i
AA

k

 (27) 
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where ( )φj
ti

A  is the j-th predicted portion of area at time ,Tti ∆α+  given 

by 

( ) ( ),
1

φ+ε=φ ∑
=

j
i

n

j

j
t AA
i

 (28) 

and ( )φj
iA  is the i-th and j-th predicted portion of area 

( ) ( ( ) ( )) .cossin jjj
j

ij
j

i drA
j

φφ+φ=φ ∫φ  (29) 

Let us now formulate our proposed algorithm. We name it cobweb, 
see below in Step 3 for further explanations. We need to choose the 
number of vectors (angular resolution) and decide for the period of 
prediction (linear resolution). The precision of the prediction depends on 
these choices. Once we have this and the values of the vectors at time 0t  

and ,0 Tt ∆+  we can start the procedure: 

Step 1. We compute the value of the vector j
i

j
t rR
i 11 +=
+

G
 using the 

current value of this vector (at time it ) and we add the difference of the 

value of this vector at the current time with the value of the immediate 
past time, with expression (22). This is represented by a point of the 
future bounded tumor in the direction of this vector. The union of all 
these points gives the entire tumor. 

Step 2. We calculate the area ( )φj
iA  with expression (29). 

Step 3. The general formula for computing the growing rate after a 
period it  of time is given from the fact that a portion of area calculated in 

the step before is used in the current step, and in turn it is used on the 
following step (like a spider who is building its cobweb): 

( )( ).1
11

11
1

j
i

j
i

j
i

n

ji

j
i AAnAA −

−−

==
+ −++ε= ∑∑ k

k
 (30) 
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Figure 8. Error propagation. 

The error ε  (red region in Figure 8) is given by the fact that we 
compute an approximated area with this method. This error can be 
diminished by using a numerical method such as least squares, the 
trapezium method or just by increasing the resolution. 

In Figure 9, we provide an estimation of the growth tumor after two 
months and the result comes in the green region. In this case, the time 
period is .2 T∆  This algorithm can be extended to a three-dimensional 

space by replacing the vector j
tR
G

 with a surface generated from this 

vector with spherical coordinates. In this case, we should define a new 
resolution (radial resolution). 
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Figure 9. Predicted tumor after two months. 

4. Software 

We implemented a set of new functions in Matlab software to proceed 
with our approach based on images coming from magnetic resonance 
imaging (MRI), computed tomography (CT) or another such techniques. 

4.1. Input data 

As input data we need at least two images (ideally three) of the same 
brain tumor, taken at predetermined or known time intervals. The 
precision of our method of prediction is given mainly by the number of 
vectors in which the direction of the tumor growth is forecast; they divide 
the circle counterclockwise in a number of angles equal to the number of 
vectors, so that we can say that they represent the angular resolution. 
We also need to input the time between any two images, and the elapsed 
time since the second image. 

 



IULIAN T. VLAD and JORGE MATEU 24

In our case, these last two input data are days but can also be months 
or hours (entire unit time). The accuracy of prediction also depends on 
these elections based on longitudinal resolution, which gives the unit 
time of growth rate per vector. 

4.2. Procedures that must be fulfilled 

The main objective of this code is to implement the algorithm 
presented in the previous section, and obtain a prediction of the tumor 
boundary. To perform this, we need to follow some stages: 

(a) Comparison of the two (or three) images taken as input data to 
determine the rate of increase or decrease of the tumor from each chosen 
vector (direction). 

(b) To obtain the most accurate growth rate in each direction, it is 
absolutely necessary that the images are taken under the same 
conditions, observing a single point of reference, respecting and 
preserving the same cartesian reference for all future tests of the same 
patient. 

(c) In a two-dimensional situation, we have to determine the 
approximate tumor center for the first image, and it will be preserved for 
all other images (second and/or third image if necessary). 

(d) A good precision is obtained if the images to be compared are 
taken on the same plane and do overlap. If this is not the case, this 
means that the patient does not have the same position and then we have 
to apply some transformations (translations and/or rotations). 

(e) To get a more precise outline of the tumor prediction, we need to 
compare the different stages of the tumor development. This will be done 
by entering the coordinate points of the contour for each instance of time. 
By default the number of points is set to 20 but the user can modify this 
to increase the precision in detriment of computing time. The user must 
choose the coordinates of designated points (number of contour points) 
exactly at the intersection of the line vector with the contour line of the 

edge of the tumor, ( ) t
j
tiii YRyxP ∩=;  (see Figure 2 and Figure 7). 
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(f) Besides the angular resolution (the number of vectors that will 
calculate the prediction), accuracy of calculation will be influenced by 
how precise and accurate the contour points are chosen. To ease the task, 
we use the image segmentation function (“imcontour” [8] in Matlab) that 
will depict more clearly the outline of the tumor. 

(g) We can interpolate the outline by using splines over the existing 
points to get a more precise outline. 

The output of these functions represent the contour of the predicted 
tumor after the time designated by the user. This will be plotted in the 
same two-dimensional plane with the last tumor, together with all stages 
of the tumor development in time. In Figure 10, we show a diagram of the 
built software. 

 

Figure 10. Diagram of the script. 
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5. Real Data Analysis 

We study a particular tumor located in the Central Nervous System 
and called glioblastoma multiform. In conformity with the World Health 
Organization, this tumor is the most aggressive tumor with type and 
grade according to the IV-th classification. Observing the scaned images, 
it is clear that there is presence of multiple tumors in the body, a fact 
called metastasis. These metastatic tumors are children of primary 
tumors from breast, lung, colon, stomach, and skin (melanoma), but in 
our case, the first one was the brain tumor. 

A patient with glioblastoma multiform has an average life span of 
one year, receiving radiation therapy, steroids, and anti-convulsants. 
Otherwise the patient dies long before one year. For the patients affected 
by this type of tumor, a neurological deterioration is noted producing 
difficulty in organizing and coherently expressing ideas, and then losing 
the mobility function, all depending on the order in which the tumor 
affects the brain and areas focused on memory, speech, motor function, 
etc. 

Here we selected three images taken in the same plane: two from 
November 9 and December 8, 2009 and one from January 10, 2010. Using 
the first two images, we can make a prediction of the tumor growth for 
the next temporal instant, and we can thus compare the prediction with 
the original third image. 

Using the Matlab function “linie.m” [8], we can determine the 
approximate center point of the tumor by choosing 4 points in the contour 
of the tumor, and opposite two by two. This will plot two lines, whose 
intersection provides the coordinate of the center point. We then 
determine the sample space (blue contour) and the growing directions 
(vectors, black lines). By default the angular resolution is 20, meaning 
that the user should choose 20 points to design the “sample space”. The 
choice of these points must take into account physical considerations 
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such as: (a) the coordinates of each chosen point can be at the limit of the 
tumor after a certain time but not too far away; (b) if the tumor grows 
very quickly in one direction and the coordinate value that it can take in 
that direction is not physically possible (for example, it can get out of the 
head box), then the prediction takes as value the limit point of the 
sample space, which represents the maximum allowed values in this 
direction; (c) the designation of the sample space points can be seen as an 
outline of the tumor when the time is very large; and (d) the last point in 
the sample space must have the same coordinates as the first point, and 
if the user misses this, the Matlab program will do this automatically. 

The sample space must include the tumor contour at time t and 
Tt ∆+  with which we can make the prediction. The user must select the 

same number of points, but this time, at the intersection of the vectors 
(black lines) with the boundary of the tumor. This action will draw the 
outline of the first tumor with a yellow line (see Figure 11). 

Then, we upload the next magnetic resonance image (the second 
analysis) and follow the same procedure to enter the contour points for 
the second tumor. This set of points should belong to the vectors and also 
to the boundary of the tumor, and so each point iP  must be chosen at the 

intersection of each vector j
ttR ∆+  with the boundary tumor .TtY ∆+  This 

will draw a red spline curve corresponding to the boundary of the tumor 
at time Tt ∆+  (see Figure 11). 
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Figure 11. Real data analysis. A yellow line represents the tumor at 
time t (time when it was discovered), and a red line represents the tumor 
after time .Tt ∆+  
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In the next step, we apply our algorithm to predict the growing tumor 
after 33 days. The prediction (green line in Figure 12) will be drawn and 
calculated as a spline curve. If we have a third image that represents the 
tumor stage at time ,α+∆+ Tt  we can directly compare the predictive 
results with the original ones. 

 

 

Figure 12. Predicted tumor. 



IULIAN T. VLAD and JORGE MATEU 30

In Figure 12, we can see the result of the prediction. We use a 
segmented picture for a better observation of the contour of the tumor. 
The boundary of the predicted tumor is plotted in green on the 
background image from December. We can note the evolution of the 
tumor in time: the first stage comes in a yellow line, and second stage in 
a red line. In the right-hand side window, we show the predicted tumor 
over the background image of the tumor from January 10. 

6. Conclusion 

The double stochastic process theory offers a mathematical 
background to study some natural and physical phenomena in the real 
world and it takes some conclusions and supplementary information 
about understanding what is happening in these complex systems. 

Mathematical modelling always tries to find a compromise between 
simplicity of analysis and requirements of realism. On the one hand, we 
have extremely complex natural and biological systems; on the other 
hand, we need to formally address some quantitative issues about these 
systems, which can be often done only through the use of mathematical 
models that may rest on grossly over-simplified assumptions. 

On some occasions, a particular mathematical formalism seems to be 
pre-adapted to a variety of natural and biological systems and can be 
profitably used to model a diverse set of processes. Double stochastic Cox 
processes are one class of such models, used here to solve real problems 
in the field of medicine. 

For most of the realistic problems, the solution of the corresponding 
exact equation is in practice impossible, so we need to make 
approximations. Making approximations to solve difficult problems is not 
a new idea. Appropriate models enable accurate prediction of future 
behaviour, which can be used to control and optimize various aspects of 
the system in question. However, these approximations are associated 
with noise induced upon the real problem. The aim is to keep to a 
minimun this added noise, as this will increase the prediction quality. 
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We have presented here a mathematical-statistical approach to 
analyze the spatiotemporal dynamics of brain tumors. They come in form 
of processed computer tomography images. We interpret them as 
collections of image pixels with varying degrees of colour intensity levels. 
As such, they can be considered as a stochastic process, and we make use 
of spatiotemporal stochastic processes as the right statistical framework. 
Using this framework, we are able to predict cancer growth in space and 
time, and show real data analysis. The results are shown to be 
satisfactory, as noted in the prediction shown in Figure 12. In addition, 
we have implemented a Matlab software. The code is available upon 
contacting the authors. We should also note that we have assumed a 
constant growth, and in some cases, this growth can not be assumed 
constant, and we should adapt our modelling strategy to the case of 
acceleration motion. This is clearly subject of a further research. 
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