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Abstract 

In this paper, reliability function of YXZ +=1  denoted by ( ) ,11 zFZ  is derived when 

( )YX ,  follow Marshall and Olkin’s bivariate exponential distribution (MOBVE) with 

dependence between X and Y first. Furthermore, ( ) ,zFZ  which is the reliability function of 

,YXZ β+α=  is also obtained for the same condition ( ) ., YX  Besides, the fact that 

( )11 zFZ  will become ( )zFZ  when 1=β=α  can be proved at last. 
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1. Introduction 

Without a doubt, bivariate exponential distributions are one of the 
most applied distributions in the area of reliability. When there are two 
or more variables affecting the system, in most of the cases the analysis 
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is carried out by assuming that they are statistically independent. 
However, the assumption of independence does not hold sometime in 
practice. Several bivariate models have been introduced in the literature. 
Some well know bivariate exponential distributions are those by Gumbel 
[1], Freund [2], Marshall and Olkin [3], Block and Basu [4], Downton [5] 
and so on. And these distributions attracted many practical applications 
in reliability problems. Besides, the distribution of ,YXZ β+α=  which 
is of interest in quality and reliability engineering, has been studied by 
several authors especially when X and Y are independent random 
variables. However, there is relatively little work of this kind when X and 
Y are dependent random variables. Gupta and Nadarajah [6] provides 
exact and approximate distributions for the combination of inverted 
Dirichlet components. Guo [7] gives the exact distributions of the linear 
combination of the bivariate exponential distributions, and Zhang [8] 
gives some revise to the results of Guo’s. 

This paper gives the reliability function of YXZ +=1  and 
YXZ β+α=  according to the work above. Rest of the paper is 

organized as follows. In Section 2, the necessary pre-knowledge is 
prepared for the following work. In Section 3, the reliability function of 

YXZ +=1  and YXZ β+α=  has been derived. Conclusion of the 
paper will be done in Section 4. 

2. Pre-knowledge 

The bivariate exponential distribution in this paper refers to Marshall 
and Olkin’s bivariate exponential distribution ( ( ,,MOBVE 21 λλ ))12λ  as 
follows. 

Definition 2.1 ([9]). Marshall and Olkin’s bivariate exponential distribution 
( ( ))1221 ,,MOBVE λλλ  has the joint pdf specified by 
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And the following theorem will be used in the Section 3. 

Theorem 2.2. If X and Y have the joint probability density function (2.1), 
pdf of YXZ β+α=  is: 

( )

( )
( )

( )
( ) ,

0,0

0,expexp

expexp

1221121
1212

1212

1221221
1122

1221














≤

>













β+α
λ+λ+λ

−−







α
λ+λ

−
λ+λβ−αλ

λ+λλ

+













β
λ+λ

−−







β+α
λ+λ+λ

−
βλ−λ+λα

λ+λλ

=

z

zzz

zz

zfz  

(2.2) 

where 0,0 >β>α  

3. Reliability Function of YXZ +=1  and YαXZ β+=  

Theorem 3.1 derives the reliability function ( )11 zFZ  when X and Y 

are distributed according to (2.2). 

Theorem 3.1. If X and Y are jointly distributed according to (2.2), then 
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for ,0 1 ∞<< z  where ,~, 12111221 λ+λ=λλ+λ+λ=λ  and .~
1222 λ+λ=λ   

Proof. According to (2.2), we can readily see that ( ) ( )11 111 zfzF ZzZ ∫
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In fact, reliability function ( )11 zFZ  refers the reliability of cold standby 

system for two different components which can be found in Cheng’s paper 
[10]. Corollary 3.2 shows that reliability of cold standby system with two 
different independent components is the special case of Theorem 3.1. 

Corollary 3.2. If ,012 =λ  that is, ,211221 λ+λ=λ+λ+λ=λ  

11211
~ λ=λ+λ=λ  and ,~
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More generally, ( ),zFZ  which is the reliability function of ,YXZ β+α=  

has been obtained for the same condition ( )YX ,  from the following 

Theorem 3.3: 

Theorem 3.3. If X and Y are jointly distributed according to (2.2), then 
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Corollary 3.4. When ,1=β=α  Theorem 3.3 becomes to Corollary 3.2. 

Proof. When ,1=β=α  the results is obviously true from (3.3) and (3.2). 

4. Conclusion 

Specific expressions of reliability function of YXZ +=1  denoted by 

( ),11 zFZ  is derived when ( )YX ,  follow Marshall and Olkin’s bivariate 

exponential distribution (MOBVE) with dependence between X and Y. 

Besides, ( )zFZ  is also obtained for the same condition ( )., YX  Finally, 

( )11 zFZ  will become ( )zFZ  when 1=β=α  has been proved. Reliability 

of linear combination of other bivariate distributions will be studied in 
future. 
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