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Abstract 

By using transformation ,2
321 uauaau ++=′′  the method of sine-cosine and the 

method of dynamical bifurcation theory of the differentiable dynamics, we study 
the generalized Kuramoto-Sivashinsky equation. It is shown that the generalized 
Kuramoto-Sivashinsky equation gives solitary wave solution, solitary patterns 
wave solution, and periodic wave solution. Under different parametric conditions, 
various sufficient conditions to guarantee the existence of the above solutions are 
given. All exact explicit parametric representations of the above waves are 
determined. 
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1. Introduction 

In recent years, much attention has been paid on the study of 
nonlinear wave equations (NLWE) in low dimensions. But there is little 
work on the high dimensional ones. It is well known that most of high 
dimensional NLWEs fail the conventional integrability tests, so the 
natural and important problem is that are there exact solutions with 
good properties for the high dimensional NLWEs? To solve this problem, 
people have made some attempts. 

In 1990, Aspe and Depassier [1] considered the following evolution 
equation of surface waves in a convecting fluid: 

( ) ,015 43
2

21 =



 λ+λ+
σ

+λ+λ+ xxxxxxxxxxxxt uuuuRuuuu   (1.1) 

where σ  is the Prandtl number and   is a small parameter such that the 

excess of the Rayleigh number above its critical value is given by .2
2R  

The coefficients ,41, −=λ ii  are functions of the parameters of the 

problem. Subscripts denote derivatives with respect to the time t and 
horizontal coordinate x. This equation without the effect of instability, 
that is, with ,02 =R  has been found recently to be the generic equation 

that describes the evolution of marginally diffusively stable wave trains 
[2]. A similar equation but with 04 =λ  and with instability and 

diffusion of the same order as dispersion arises in the study of fluid flow 
along an inclined plane. Numerical studies of this equation have shown 
that in the dispersion-dominated regime, for periodic boundary 
conditions, regular arrangements of soliton like pulses appear. The 
overall evolution of the system for a sufficiently long periodicity interval 
is apparently governed by the interaction of these pulses. 

For ,115and,,1 2
2431 =

σ
σ=λ=λ=λ=λ

R  Equation (1.1) becomes 

to 

( ) .0=++σ+++ xxxxxxxxxxxxt uuuuuuuu   (1.2) 



EXACT TRAVELLING WAVE SOLUTIONS … 3

Equation (1.2) is called generalized Kuramoto-Sivashinsky (KS) 
equations [3] and by using the tanh-function method, find explicit 
solitary travelling wave solutions of Equation (1.2) 

In this paper, by using transformation 

( ) ( ) ( ) ,,2
321 ctxuauaau −=ξξ+ξ+=ξ′′   (1.3) 

the method of sine-cosine and the method of dynamical bifurcation theory 
of the differentiable dynamics to Equation (1.2), the existence of solitary 
wave solution, solitary patterns wave solution, and uncountably infinite 
many smooth periodic wave solutions is obtained. Under different 
parametric conditions, various sufficient conditions to guarantee the 
existence of the above solutions are given. All exact explicit parametric 
representations of the above waves are determined. The two methods will 
be described briefly, where details can be found in [4-6] and the 
references therein. 

Let ( ) ( ) ,,, ctxutxu −=ξξ=  where c is the wave speed. Then (1.2) 

becomes to 

( ) ( ) .04 =′′++′′′σ+′′+′+′− uuuuuuuuc   (1.4) 

Integrating (1.4) once and setting integration constants as g, we have 

( ) .2
1 2 guuuuuucu =′+′′′+′′σ+′++−   (1.5) 

Substitute (1.3) into Equation (1.5), we have 

( ) ( ) ( ) ( ) .0212
1

32
2

321 =′++′++σ+−σ+−σ uuauauaucaga   (1.6) 

We know the Equation (1.6) was established, for ,1, 21 −=−= ac
ga  

.1and,,2
1

3 ccca =−=σ=   Therefore, we only consider Equation (1.3). 
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The paper is organized as follows. In Section 2, the method of 
dynamical bifurcation theory of the differentiable dynamics and the    
sine-cosine method are briefly discussed. In Section 3, represents exact 
analytical solutions of Equation (1.3) by using the sine-cosine method. In 
Section 4, we discuss bifurcations of phase portraits of Equation (1.3). In 
Section 5, all explicit parametric representations of travelling wave 
solutions are given. In Section 6, the existence of smooth solitary wave 
solutions and uncountable infinite many non-smooth periodic wave 
solutions of (1.2) is discussed. In the last section, we conclude the paper 
and give some discussions. 

2. Analysis of the Two Methods 

The sine-cosine method and the method of dynamical bifurcation 
theory of the differentiable dynamics have been applied for a wide variety 
of nonlinear problems. The main features of the two methods will be 
reviewed briefly. 

For both methods, we first use the wave variable ctx −=ξ  to carry a 

PDE in two independent variables 

( ) ,0,,,,,,,, =…… xxxxxxtttxt uuuuuuuP   (2.1) 

into an ODE 

( ) .0,,,, =′′′′′′ …uuuuQ   (2.2) 

Equation (2.2) is then integrated as long as all terms contain derivatives, 
where integration constants are considered zeros. 

2.1. The sine-cosine method admits the use of the solution in the form 

( ) ( )




 π<µξµξλ=ξ

β

,otherwise,0
,2,cosu  (2.3) 

or in the form 

( ) ( )


 π<µξµξλ=ξ

β

,otherwise,0
,,sinu  (2.4) 
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where ,, µλ  and β  are parameters that will be determined. We therefore 
use 

( ) ( ),cos µξλ=ξ βu  

( ) ( ),cos222 µξλ=ξ βu  (2.5) 

( ) ( ) ( ) ( ),cos1cos 222222 µξ−ββλµ+µξλβµ−=″ −ββu  

and for (2.4), we use 

( ) ( ),sin µξλ=ξ βu  

( ) ( ),sin22 µξλ=ξ βu   (2.6) 

( ) ( ) ( ) ( ).sin1sin 222222 µξ−ββλµ+µξλβµ−=″ −ββu  

We substitute (2.3) or (2.4) into the reduced ordinary differential 
equation obtained above in (2.2), balance the terms of the cosin functions 
when (2.3) is used, or balance the terms of the sine functions when (2.4) 
is used, and solving the resulting system of algebraic equations by using 
the computerized symbolic calculations to obtain all possible values of the 
parameters ,, µλ  and .β  

2.2. The method of dynamical bifurcation theory of the differentiable 
dynamics. 

The standard method of dynamical bifurcation theory of the 
differentiable dynamics introduced in [4] and the references therein. 

3. Using the Sine-Cosine Method 

Substituting (2.3) into (1.3) yields 

( ) ( ) ( ) ( ) ( ).cos2coscos1cos 2
2

222222 µξλ+µξλ−=µξ−ββµλ+µξµβλ− ββ−ββ
c  

(3.1) 

(3.1) is satisfied only if the following system of algebraic equations 
holds: 
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( ) .21,,22,01
2

22222
c
λ=−ββµλµβλ−=λ−−β=β≠−β  (3.2) 

Solving the system (3.2) gives 

.3,12
1,2 2 cc =λ=µ−=β  (3.3) 

The results (3.3) can be easily obtained if we also use the sine method 
(2.4). Combining (3.3) with (2.3) and (2.4), the following periodic solution: 

( ) ( ) ,0,3
6
1sec3,, 2

1 >







−= cctxcctyxu  (3.4) 

( ) ( ) 0,3
6
1csc3,, 2

2 >







−= cctxcctyxu  (3.5) 

are readily obtained. 

However, for ,0<c  we obtain the following solitary wave solutions 
and solitary patterns wave solutions: 

( ) ( ) ,0,3
6
1sech3,, 2

3 <







−

−
= cctxcctyxu  (3.6) 

( ) ( ) .0,3
6
1csch3,, 2

4 <







−

−
−= cctxcctyxu  (3.7) 

4. Bifurcations of Phase Portraits of (4.2) 

Here we are considering a physical model where only bounded 
travelling waves are meaningful. So we only pay attention to the bounded 
solutions of (1.4). The bifurcation theory of dynamical systems (see [7-9]) 
plays an important role in our study. 

For ,1and,,2
1,1, 321 cccaac

ga =−=σ=−=−=   Equation (1.3) 

becomes to 

( ) ( ) ( ).2
1 2 ξ+ξ−−=ξ′′ ucuc

gu  (4.1) 
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Equation (4.1) is equivalent to the two-dimensional systems as follows: 

( ) ( ),2
1, 2 ξ+ξ−−=

ξ
=

ξ
ucuc

g
d
dyyd

du  (4.2) 

with the first integral 

,3
12 322 hucuc

gy ++−−=  (4.3) 

and 

( ) .3
12, 322 hucuuc

gyyuH =−++=  (4.4) 

In this section, we study all possible periodic annuluses defined by 
the vector fields of (4.2) when the parameters gc,  are varied. 

Denote that ,21 2c
g+=∆  which imply the relations in the        

( ) parameter-, gc  plane 

.2
1: 2cgL −=  

Thus, we have 

(i) For ,021 2 >+=∆
c
g  there exist 2 equilibrium points of (4.2): 

( ( ) ).0,1 ∆±± cA  

(ii) For ,021 2 <+=∆
c
g  there have no equilibrium points of (4.2). 

Let ( )ee yuM ,  be the coefficient matrix of the linearized system of 

(4.2) at an equilibrium point ( )., ee yu  Then, we have 

( ) ( )( ) .110,det0, iii ucuMuJ −==  

By the theory of planar dynamical systems, we know that for an 
equilibrium point of a planar integrable system, if ,0<J  then the 
equilibrium point is a saddle point; if 0>J  and ( ( )) ,0, =ii yuMTrace  
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then it is a center point; if 0>J  and ( ( )) ( ) ,0,4, 2 >− iiii yuJyuMTrace  

then it is a node; if 0=J  and the index of the equilibrium point is 0, 
then it is a cusp, otherwise, it is a high order equilibrium point. 

For the function defined by (4.4), we denote that 

( ) [( ) ] .2,1,233
20, =−−−== igugcc
uuHh i

i
ii  

We next use the above statements to consider the bifurcations of the 
phase portraits of (4.2). In the ( ) parameter-, gc  plane, the curves L and 

0=c  partition it into 4 shown in Figure 1. 

 

Figure 1. The bifurcation set of (4.2) in ( ) parameter-, gc  plane. 
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Figure 2 show the phase portraits of (4.2) for .0>∆  

 

(2-1) ( ) ( )I, ∈gc    

 

(2-2) ( ) ( )II, ∈gc  
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(2-3) ( ) ( )III, ∈gc  

 

(2-4) ( ) ( )IV, ∈gc  

Figure 2. The phase portraits of (4.2) for .0>∆  



EXACT TRAVELLING WAVE SOLUTIONS … 11

5. Exact Explicit Parametric Representations of 
Travelling wave Solutions of (1.1) 

5.1. Suppose that ( ) ( ) ( ) ( ).3
120,,I, 2

1 ++++ −+==∈ ucuc
guAHhgc  

In this case, we have the phase portrait of (4.1) shown in Figure 2 (2-1). 
We see from (4.2) that the arch curve connecting ( ( ) )0,1 ∆++ cA  has 
the algebraic equation 

( ) ( ),3
1 22

kuuuucy −−= +  (5.1) 

where ( ) .32,1 cuucu −=∆+= ++ k  Thus, by using the first equation 
of (4.2) and (5.1), we obtain the parametric representation of this arch as 
follows: 

( ) ( ) ( ).32
1tanh, 2

5 ctxc
uuuuutxu −

−
−+= +

+
k

kk  (5.2) 

Solution (5.2) gives rise to a smooth solitary wave solution of valley type 
of (1.1). 

5.2. Suppose that ( ) ( ) ( ) ( ).,,0,,I, 212 hhhAHhgc ∈=∈ −  In this 
case, we have the phase portrait of (4.2) shown in Figure 2 (2-1). We see 
from (4.2) that arch curve around as the center ( )0,−− uA  has the 
algebraic equation 

( ) ( ) ( ),3
12

mlM uuuuuucy −−−=  (5.3) 

where .0 Mlm uuu <<<  Thus, by using the first equation of (4.2) and 
(5.3), we obtain the parametric representation of this arch as follows: 

( ) =txu ,6  

( ) ( ) ( )

( ) ( )
,

,32
1

,32
1

2

2









−
−

−+
−

−−−









−
−

−+
−

−−−

mM
mlmM

mlmM

mM
mlmM

mlMmMl

uu
uuctyxc

uusnuuuu

uu
uuctyxc

uusnuuuuuu
 

(5.4) 
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where ( )k,xsn  is the Jacobi elliptic functions with the modulo k  [10]. 

Solution (5.4) gives rise to a smooth periodic wave solutions of (1.1). 

5.3. Suppose that ( ) ( ) ( ).0,,II, 1 +=∈ AHhgc  In this case, we have 

the phase portrait of (4.1) shown in Figure 2 (2-2). We see from (4.2) that 
the arch curve connecting ( ( ) )0,1 ∆++ cA  has the algebraic equation 

( ) ( ),3
1 22 uuuucy n −−−= +  (5.5) 

where ( ) .23,1 ++ −=∆+= ucucu n  Thus, by using the first equation of 

(4.2) and (5.5), we obtain the parametric representation of this arch as 
follows: 

( ) ( ) ( ).32
1tanh, 2

7 ctxc
uuuuutxu n

nn −
−
−

−−= +
+  (5.6) 

Solution (5.6) gives rise to a smooth solitary wave solution of peak type of 
(1.1). 

5.4. Suppose that ( ) ( ) ( ) ( ).,,0,,II, 122 hhhAHhgc ∈=∈ −  In this 

case, we have the phase portrait of (4.2) shown in Figure 2 (2-2). We see 
from (4.2) that arch curve around as the center ( )0,−− uA  has the 

algebraic equation 

( ) ( ) ( ),3
12

mlM uuucy φ−φ−φ−=  (5.7) 

where .0 Mlm φ<<φ<φ  Thus, by using the first equation of (4.2) and 

(5.7), we obtain the parametric representation of this arch as follows: 

( ) =txu ,8  

( ) ( ) ( )

( ) ( )
.

,32
1

,32
1

2

2









φ−φ
φ−φ

−+
φ−φ

φ−φ−φ−φ









φ−φ
φ−φ

−+
φ−φ

φ−φφ−φ−φφ

mM
mlmM

mlmM

mM
mlmM

mlMmMl

ctyxcsn

ctyxcsn
 

(5.8) 
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Solution (5.8) gives rise to a smooth periodic wave solutions of (1.1). 

6. Discussion 

In this paper, we used the sine-cosine method and the method of 
dynamical bifurcation theory of the differentiable dynamics to study the 
generalized Kuramoto-Sivashinsky equation. The methods provided 
solitary wave solutions, solitary patterns wave solutions, and periodic 
wave solutions. Moreover, the obtained results in this work clearly 
demonstrate the reliability of the methods that were used. 
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