EXISTENCE RESULTS FOR VECTOR VARIATIONAL-LIKE INEQUALITIES

YALI ZHAO and TING WANG
Department of Applied Mathematics
Bohai University
Jinzhou, Liaoning 121013
P. R. China
email: yalizhao2000@yahoo.com.cn

Abstract

In this paper, we consider and study a class of vector variational-like inequalities in Banach space without any generalized monotonicity by exploiting vector version of minimax inequality and obtain the existence results of solutions to the class of vector variational-like inequalities. The results presented here are different from [1, 5, 11], and extend and generalize the corresponding results in [7].

1. Introduction

A vector variational inequality in a finite-dimensional Euclidean space was first introduced by Giannessi [6] in 1980. This is a generalization of a scalar variational inequality to the vector case by virtue of multi-criterion consideration. Later on, vector variational inequalities have been investigated in abstract spaces, see [2, 3, 9]. It is

2000 Mathematics Subject Classification: 49J40.
Keywords and phrases: vector variational-like inequalities, weak order, ordered banach space, minimax inequality.

This work is supported by the Doctoral Initiating Foundation of Liaoning Province (20071097).

Received June 24, 2008

© 2008 Scientific Advances Publishers
worth noting that vector variational-like inequalities are important
generalization of vector variational inequalities related to the class of
connected sets which is much more general than the class of convex
sets (see [8, 10, 11]). Moreover, Under the monotonicity conditions, the
authors in [1, 5, 11] studied the vector variational (variational-like)
inequalities by using K-Fan lemma. On the other, without any
generalized monotonicity, the vector variational inequalities are studied
by using the Brouwer and Browder fixed pointed theorems in [1, 5],
respectively and in [7], Lai and Yao studied the existence of solutions of
the vector variational inequalities by minimax inequality due to Fan [4].

Inspired and motivated by the above research work, we study the
existence of the solutions of vector variational-like inequalities without
any monotonicity by using vector version of minimax inequality. The
results obtained in this paper are different from the corresponding
results in [1, 5, 11] and extend and generalize the corresponding results
in [7].

2. Preliminaries

Let X be a Banach space. A nonempty subset P of X is called a
pointed, convex cone if $P + P \subset P$, $tP \subset P$ for all $t \geq 0$ and
$P \cap (-P) = \{0\}$. The partial order "\leq" on X induced by a pointed cone is
defined by declaring $x \leq y$ if and only if $y - x \in P$ for all $x, y \in X$, and
in this case P is called a positive cone in X. Furthermore, if such a partial
order is induced by a convex cone, it is called a linear order. A ordered
Banach space is a pair (X, P), where X is a real Banach space and P is a
pointed convex cone. With linear order induced by P, the weak order "\preceq"
on ordered Banach space (X, P) with $int P \neq \emptyset$ is defined as $x \preceq y$ if
and only if $y - x \not\in int P$ for all $x, y \in X$ where "int" denotes the interior.

Let X and Y be real Banach spaces. $L(X, Y)$ is the space of all
bounded linear mappings from X into Y. We denote by (l, x) the value of
$l \in L(X, Y)$ at $x \in X$. Let K be a nonempty closed and convex subset of
X, $T : K \to L(X, Y)$ be a single-valued mapping, and a set-valued
mapping $C : K \to 2^Y$ be such that $C(x)$ is a closed, pointed and convex
cone of Y with $intC(x) \neq \emptyset$ for all $x \in K$ and $\eta : K \times K \rightarrow X$ be two vector-valued mapping. In this paper, we consider the vector variational-like inequality problem, (denoted by VVIP) that is to find $x \in K$ such that

$$(Tx, \eta(y, x)) \notin -intC(x), \forall y \in K. \quad (2.1)$$

When $C(x) = P$ for all $x \in K$ and (Y, P) is an ordered Banach space with weak order, (VVLI) becomes (VVLI$'$), that is to find $x \in K$ such that

$$(Tx, \eta(y, x)) < 0, \forall y \in K. \quad (2.2)$$

Furthermore, when $\eta(y, x) = y - x$, (VVLI) reduces to (VVI), that is to find $x \in K$ such that

$$(Tx, y - x) \notin -intC(x), \forall y \in K. \quad (2.3)$$

Lai and Yao [7] studied the existence of solution of vector variational-like inequalities (2.3) by minimax inequality in the case of nonmonotonicity conditions. In our paper, we study the existence results of (VVLI), which extend and generalize the results of [7] and different from the results of [1, 5, 11].

3. Main Results

In this section, we state and prove the existence results for vector variational-like inequalities without any generalized monotonicity assumption. To this end, the following result will be used.

Lemma 3.1 [4]. Let E be a nonempty compact convex set of a Hausdorff topological vector space. Let A be a subset of $E \times E$ having the following properties:

(i) $(x, x) \in A$ for all $x \in K$;

(ii) for each $x \in E$, the set $A_x = \{y \in E | (x, y) \in A\}$ is closed in E;

(iii) for each $y \in E$, the set $A_y = \{x \in E | (x, y) \notin A\}$ is convex.
Then there exists $y_0 \in E$ such that $E \times \{y_0\} \subset A$.

Now we can state and prove the main results of this paper.

Theorem 3.2. Let X and Y be real Banach spaces. Let K be nonempty weakly compact convex subset of X. Let $C : K \to 2^Y$ be a set-valued mapping such that for all $x \in K$, $C(x)$ is a closed, pointed and convex cone in Y with $\text{int} C(x) \neq \emptyset$, and a set-valued mapping $W : K \to 2^Y$ be defined by $W(x) = Y \setminus (\text{int} C(x))$ such that the graph of W denoted by $\text{gph} W$ is weakly closed in $X \times Y$. Let $T : K \to L(X, Y)$ be a single-valued mapping such that for all $x \in K$, the mapping $y \mapsto (Ty, \eta(x, y))$ is continuous from the weak topology of K to the weak topology of Y. Let $\eta : K \times K \to X$ be a vector-valued mapping such that

(a) $\eta(x, x) = 0$, $\forall x \in K$;

(b) $\eta(x, y)$ is affine with respect to x if, for any given $y \in K$,

$$
\eta(tx_1 + (1-t)x_2, y) = t\eta(x_1, y) + (1-t)\eta(x_2, y), \quad \forall x_1, x_2 \in K, \ t \in R,
$$

with $x = tx_1 + (1-t)x_2 \in K$. Then there exists $x_0 \in K$ such that

$$(Tx_0, \eta(x, x_0)) \notin \text{int} C(x_0), \quad \forall x \in K.$$

Proof. Let $A = \{(x, y) \in K \times K | (Ty, \eta(x, y)) \notin \text{int} C(y)\}$. Then, it is clear that $(x, x) \in A$ for each $x \in K$. Next we show that for each $x \in K$, the set $A_x = \{y \in K | (x, y) \in A\}$ is weakly closed. To this end, let $\{y_\alpha\}$ be a net in A_x converging weakly to some $y \in K$. For each α, since $(x, y_\alpha) \in A$, we have

$$(Ty_\alpha, \eta(x, y_\alpha)) \notin \text{int} C(y_\alpha) \text{ or } (Ty_\alpha, \eta(x, y_\alpha)) \in y \setminus (\text{int} C(y_\alpha)).$$

By assumption, $(Ty_\alpha, \eta(x, y_\alpha))$ converges weakly to $(Ty, \eta(x, y))$. Since $\text{gph} W$ is weakly closed in $X \times Y$ we have

$$(Ty, \eta(x, y)) \in Y \setminus (\text{int} C(y)) \text{ or } (Ty, \eta(x, y)) \notin \text{int} C(y).$$

Thus, $y \in A_x$ and consequently A_x is weakly closed.
Finally, we show that for each \(y \in K \), the set \(A_y = \{ x \in K \mid (x, y) \notin A \} \) is convex. To this end, let \(x_1, x_2 \in A_y \) and \(t_1 \geq 0, t_2 \geq 0 \) with \(t_1 + t_2 = 1 \). Then, \(A_y \) is convex. Since

\[
(T_y, t_1 \eta(x_1, y)) \in -\text{int}C(y),
\]

\[
(T_y, t_2 \eta(x_2, y)) \in -\text{int}C(y).
\]

As \(C(y) \) is convex cone and the condition of (b), we have

\[
(T_y, \eta(t_1 x_1 + t_2 x_2, y)) \in -\text{int}C(y)
\]

hence, \(t_1 x_1 + t_2 x_2 \in A_y \), and therefore \(A_y \) is convex.

Now by invoking Lemma 3.1, there exists \(x_0 \in K \) such that \(K \times \{ x_0 \} \subset A \). This implies that \(x_0 \in K \) and

\[
(Tx_0, \eta(x, x_0)) \notin \text{int}C(x_0) \quad \forall x \in K,
\]

which implies that the (VVLI) has a solution. This completes the proof.

We can derive the following corollary from Theorem 3.2.

Corollary 3.3. Let \(X \) and \(Y \) be real Banach spaces. Let \(K \) be a nonempty compact convex subset of \(X \). Let \(C : K \to 2^Y \) be a set-valued mapping such that for each \(x \in K \), \(C(x) \) is a closed pointed and convex cone and \(\text{int}C(x) \neq \emptyset \), and \(W : K \to 2^Y \) be defined by \(W(x) = Y \setminus (-\text{int}C(x)) \) such that \(gphW \) is weakly closed in \(X \times Y \). Let \(T : K \to L(X, Y) \) be continuous from the weak topology of \(K \) to the norm topology of \(Y \). Let \(\eta : K \times K \to X \) be such that

(a) \(\eta(x, x) = 0, \quad \forall x \in K \);

(b) \(\eta(x, y) \) is affine with respect to \(x \) if, for any given \(y \in K \),

\[
\eta(tx_1 + (1 - t)x_2, y) = t\eta(x_1, y) + (1 - t)\eta(x_2, y), \quad \forall x_1, x_2 \in K, \ t \in R,
\]

with \(x = tx_1 + (1 - t)x_2 \in K \). Then there exists \(x_0 \in K \) such that

\[
(Tx_0, \eta(x, x_0)) \notin \text{int}C(x_0) \quad \text{for all} \ x \in K;
\]
(c) \(\forall x \in K, \eta(x, y) \) is weakly continuous in the first argument.

Then there exists \(x_0 \in K \) such that

\[
(Tx_0, \eta(x, x_0)) \notin \text{int}C(x_0), \forall x \in K.
\]

Proof. It suffices to check that for each \(x \in K \), the mapping \(y \mapsto (Ty, \eta(x, y)) \) is continuous from weak topology of \(K \) to the weak topology of \(Y \). To this end, let \(x \in K \) be arbitrary but fixed, and let \(T_x : K \to Y \) be defined by \(T_x y = (Ty, \eta(x, y)) \), \(\forall y \in K \). Let \(\{y_\alpha\} \) be any net in \(K \) converging weakly to some \(y \in K \). By assumption, we have

\[
|Ty_\alpha - Ty|_{L(X,Y)} \to 0.
\]

Since the net \(\{y_\alpha\} \) is weakly convergent and the condition of (c), it is bounded. Therefore,

\[
|(Ty_\alpha - Ty, \eta(x, y_\alpha))| \leq \|Ty_\alpha - Ty\|_{L(X,Y)} \|\eta(x, y_\alpha)\| \xrightarrow{X} 0
\]

and hence \((Ty_\alpha - Ty, \eta(x, y_\alpha)) \) converges weakly to 0 in \(Y \). On the other hand, as \(Ty \in L(X,Y) \), \(Ty \) is continuous from the weak topology of \(X \) to the weak topology of \(Y \). Consequently, we have

\[
T_x y_\alpha = (Ty_\alpha, \eta(x, y_\alpha)) = (Ty_\alpha - Ty, \eta(x, y_\alpha)) + (Ty, \eta(x, y_\alpha))
\]

converges weakly to \((Ty, \eta(x, y)) = T_x y \). Hence the operator \(T_x \) is continuous from the weak topology of \(K \) to the weak topology of \(Y \). The result then follows from Theorem 3.2.

From Corollary 3.3, we have the following result.

Corollary 3.4. Let \(X \) be a real Banach space, \((Y, C) \) be an ordered Banach space, where \(C \) is a pointed, closed and convex cone in \(Y \) with \(\text{int}C(x) \neq \emptyset \), such that \(Y \setminus (-\text{int}C) \) is weakly closed. Let \(K, T, \eta \) be as in Corollary 3.3. Then there exists \(x_0 \in K \) such that

\[
(Tx_0, \eta(x, x_0)) \notin \text{int}C(x_0), \forall x \in K.
\]

Remark 3.5. Theorem 3.2, Corollaries 3.3 and 3.4 extend and generalize the corresponding results in [7].
References

