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Abstract

Topological invariants are very useful in various areas related to digital images
and geometric modelling. In this paper, we study the simplicial homology
groups of certain minimal simple closed surfaces, extend an earlier definition of
the Euler characteristics of digital image, and show how to compute the Euler
characteristic of several digital surfaces. In Example 4.4, we correct an error
that appears in [16].

1. Introduction

Digital topology, introduced by Rosenfeld [21], plays an important
role in computer vision, image processing, and computer graphics. As a
result, many researchers (Rosenfeld, Kong, Kopperman, Kovalavsky,
Malgouyres, Boxer, Chen, Rong, Kacynski, Mischaikow, Mrozek, Han,
Karaca, and others) wish to characterize the properties of digital images

with tools from topology (including algebraic topology).

In algebraic topology, the definition of homology groups is more
sophisticated and less intuitive than the definition of homotopy groups.
The digital simplicial homology group is an important tool for image
analysis because a general algorithm to decide whether two distinct
objects have isomorphic homology groups could be a very powerful tool for
image analysis. Therefore, it is desirable to study the simplicial homology

groups of digital images.

In [12], Chen and Rong have designed linear time algorithms to
recognize and determine topological invariants such as the genus and
homology groups in 3D. These properties can be used to identify patterns
in 3D image recognition. They use Alexander duality to obtain the
homology groups of a 3D object in 3D space. Several researchers have
studied simplicial homology groups of digital images; see, e.g., [1], [18].
The current paper builds on [1] to expand our knowledge of the simplicial

homology groups of digital images.

This paper is organized as follows. Some basic notions are provided in
Section 2. In the next section, we compute the simplicial homology groups

of certain minimal simple closed surfaces and present results of Arslan et
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al. [1]. In the last section, we define Euler characteristics of digital
images as a more general notion and compute Euler characteristics of

certain digital surfaces. Among our results is a correction of an assertion
of [16].

2. Preliminaries

Let Z" be the set of lattice points in the n-dimensional Euclidean
space, where Z is the set of integers. A (binary) digital image is a subset

of Z" with an adjacency relation. We use a variety of adjacency relations

in the study of digital images.
Definition 2.1 [19]. (1) Two points p and ¢ in Z are 2-adjacent, if
|p — g| =1 (see Figure 1).

(2) Two points p and ¢ in 7? are 8-adjacent, if they are distinct and

differ by at most 1 in each coordinate (see Figure 2).

(3) Two points p and ¢ in 7? are 4-adjacent, if they are 8-adjacent

and differ in exactly one coordinate (see Figure 2).

(4) Two points p and q in 73 are 26-adjacent, if they are distinct and
differ by at most 1 in each coordinate (see Figure 3).

(5) Two points p and q in 73 are 18-adjacent, if they are 26-adjacent

and differ in at most two coordinates (see Figure 3).

(6) Two points p and q in 73 are 6-adjacent, if they are 18-adjacent
and differ in exactly one coordinate (see Figure 3).

The numbers {2, 8, 4, 26, 18, 6} reflect the number of adjacent

points, e.g., in 7% a point has 8 8-adjacent points. More general,

adjacency relations are studied in [17].

.<........-.ng.._-..._____>

Figure 1. 2-adjacency.
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Figure 3. 6-adjacency, 18-adjacency, 26-adjacency.

Let a, b € Z with a < b. A set of the form
la, b], ={z € Z|a<z<b}
is called a digital interval [4].

Let « be an adjacency relation defined on Z". A k-neighbor of a

lattice point p is k -adjacent to p. A digital image X < Z" is k -connected

[17], if and only if for every pair of different points x, y € X, there is a
set {xq, x1, ..., x,} of points of a digital image X such that x = x,
y =x,, and x; and x;,; are k-neighbors, where i =0,1,...,r—-1. A

k -component of a digital image X is a maximal k -connected subset of X.
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Definition 2.2 [5, 22]. Let X < Z"0 and Y < Z™ be digital images

with kg-adjacency and k;-adjacency, respectively. Then, the function
f:X — Y is said to be (kg, K )-continuous, if for every kq-connected
subset U of X, f(U) is a k; -connected subset of Y. We say that such a

function is digitally continuous.

Proposition 2.3 [5, 22]. Let X c Z™ and Y c Z™ be digital

images with kq-adjacency and kq-adjacency, respectively. Then, the
function f : X - Y is (kq, k1 ) -continuous, if and only if for every pair of
ko -adjacent points {xg, x1} of X, either f(xq)= f(x;) or f(xo) and
f(x1) are ky-adjacent in'Y.

Note that the proposition’s characterization of continuity is what

Chen calls an immersion, a gradually varied operator, or a gradually

varied mapping in [10] and [11].

By a digital k -path of length m from x to y in a digital image X, we

mean a one-to-one (2, k)-continuous function f : [0, m], — X such that
f(0)=x and f(m)=y. If f(0) = f(m), then the k-path is said to be
closed, and the function fis called a « -loop. Let f : [0, m —1], — X be a
(2, k) -continuous function such that f(i) and f(j) are « -adjacent, if and
only if j =i+1 mod m. Then the set f([0, m —1];) is a simple closed

Kk -curve.

Let X ¢ Z™ and Y < Z™ be digital images with k-adjacency and
k1 -adjacency, respectively. A function f : X — Y is (kg, k; ) -isomorphism
[8], if fis (kg, k1 ) -continuous and bijective and further f!:Y — X is
(k1, Ko ) -continuous, in which case we write X Z(kg,np )Y~ Let us define

the notion of interior, which plays an important role in establishing a

connected sum.
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Definition 2.4 [15]. Let ¢* := (x(, %1, ..., x, ) be a closed & -curve in
72, where {k, R} = {4, 8}. A point x of the complement ¢ of ¢* in Z2 is
said to be interior to c¢*, if it belongs to the bounded & -connected
component of c_* The set of all interior points to ¢* is denoted by
Int(c").

The digital images MSCg, MSCjy, and MSC§', which are obtained

from the minimal simple closed curves MSCg, MSC,, and MSCg in 72,

respectively, are essentially used in establishing the notion of a connected
sum [15].

4
® L
L L
L ]
& L
L
&
{ = - # W
MSC, MSC MSCyg

Figure 4 [16]. Minimal simple closed curves.

e MSCg = MSCg U Int(MSCg), where MSCg is a digital image,

which is (8, 8)-isomorphic to the set
{(09 0)’ (1’ 1)> (1’ 2)’ (09 3)9 (_1’ 2)’ (_1’ 1)}

e MSCjy = MSC, U Int(MSC, ), where MSC, is a digital image,

which is (4, 4)-isomorphic to the set

{(0,0), (1, 0), (2, 0), (2, 1), (2, 2), (1, 2), (0, 2), (0, 1);.



TOPOLOGICAL INVARIANTS IN DIGITAL IMAGES 115

o MSCF = MSCi U Int(MSCg ), where MSCy is a digital image,
which is (8, 8)-isomorphic to the set

{(O’ O)’ (1’ 1)’ (_1’ 1)’ (0’ 2)}

oA, Al p S AL

T = A S

Figure 5 [15]. Diagram for a connected sum.

We recall a connected sum of two digital surfaces.

Definition 2.5 [15]. Let S, be a closed kg -surface in Z™ and let
S, be a closed k; -surface in Z™ for ng, n; > 3. Consider A/ < A,
< S, such that Al = g Int(MSCyg), A= (k0,4) Int(MSC}), or
Al Z(x0,8) Int(MSCY'). Let f: A, — f(Ay) < S bea (ko Kk1)-
isomorphism. Let S = S. \ A, i€ {0,1}. Then the connected sum,

denoted S, S, is the quotient space S, US, /~, where

i1 A\ Ay, = Sy, is the inclusion map and i(x) ~ f(x) for x € A, \ A, -
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3. Homology Groups of n-Dimensional

Digital Images

In algebraic topology, computing homology groups is easier than
computing higher degree homotopy groups. Therefore, we prefer
computing a homology group of a digital image to computing a homotopy
group of a digital image. The simplicial homology groups of n-dimensional
digital images from algebraic topology have been introduced in Arslan et
al. [1]. In this section, we expand our knowledge of the simplicial

homology group of digital images.

Definition 3.1 (see [24]). Let S be a set of nonempty subset of a

digital image (X, k). Then the members of S are called simplexes of

(X, k), if the followings hold:

(a) If p and ¢ are distinct points of s e S, then p and ¢ are
k -adjacent.

(b)If seS and 0 2t c s, then ¢t € S (note this implies every point
p that belongs to a simplex determines a simplex {p}).

An m-simplex is a simplex S such that |S| = m + 1.

Let P be a digital m-simplex. If P’ is a nonempty proper subset of P,
then P’ is called a face of P.

Definition 3.2 [1]. Let (X, k) be a finite collection of digital
m-simplices, 0 < m < d for some non-negative integer d. Then (X, k) is

called a finite digital simplicial complex.
(1) If P belongs to X, then every face of P also belongs to X.

@) If P,Q € X, then PN Q is either empty or a common face of P
and Q.

The dimension of a digital simplicial complex X is the largest integer

m such that X has an m-simplex.
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Definition 3.3 [1]. C;(X) is a free abelian group with basis all

digital (x, g)-simplices in X.

Corollary 3.4. Let (X, r)c Z" be a digital simplicial complex of

dimension m. Then for all ¢ > m, Cy(X) is a trivial group.

Definition 3.5 [1]. Let (X, k) c Z" be a digital simplicial complex of
dimension m. The homomorphism J, : Cg(X) - C;_1(X) defined by
q i A )
04(< pos P1» s Pg >) = Zi:o(_ ' <P, Pus oo Bis oo Pg > q=m
0, q > m.
is called a boundary homomorphism (where p; means delete the point
Di)-
Proposition 3.6 [1]. For all 1 < g < m, we have
6q_1 ° 8q = 0

Theorem 3.7 [1]. Let (X, k) c Z" be a digital simplicial complex of

dimension m. Then,

CH(X):0—mi1 5 0% (X)—m 0% (X)—Iml ... 9,08 (X)—20 50

i1s a chain complex.

Definition 3.8 [1]. Let (X, k) be a digital simplicial complex.
(1) Zy(X) = Ker 9, is called the group of digital simplicial g-cycles.

(2) By(X)=1Imao,,; is called the group of digital simplicial
g-boundaries.
(8) Hy(X)=Zy(X)/By(X) is called the g-th digital simplicial

homology group.
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Definition 3.9. Let ¢ : (X, ko) = (Y, k1) be a function between
digital images. If for every digital (xg, m)-simplex P determined by the
adjacency relation kg in X, ¢(P) is a (ky, n)-simplex in Y for some

n < m, then ¢ is called a digital simplicial map.
Definition 3.10. Let o¢: (X, kg) > (Y, k1) be a digital simplicial
map. For ¢ > 0, we define a homomorphism ¢, : C3°(X) - Cg! (Y) by
0:((Po, s Pg)) = (04(P0), - @4(Pg ))-

The following lemma immediately comes from Definition 3.10.

Lemma 3.11. If ¢ : (X, ko) = (Y, k1) is a digital simplicial map,

then
¢ C’;‘O (X) - C;‘l (Y)
is chain map; that is, @40 = 0¢;.

Theorem 3.12 [1]. If f : X —» Y is a digital (kq, k1 ) -isomorphism,

then forall ¢ < m
Hy%(X) = Hp (Y).
Theorem 3.13 [1]. If (X, k) is a single vertex, then

Z, qg =0,

HE(X) =
¢(X) {0, q > 0.

Theorem 38.14. Let (X, k) be a directed digital simplicial complex of

dimension m.

(1) H;‘ (X) is a finitely generated abelian group for every q > 0.
(2) Hy(X) is a trivial group for all g > m.

(8) Hy(X) is a free abelian group, possibly zero.
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Proof. (1) We know that Cj(X) is finitely generated and abelian.
Hence, its subgroup Zg(X) is finitely generated and abelian. It is clear

that its quotient Hy(X) is a finitely generated abelian group.
(2) It is clear from Corollary 3.4.

(3) By Corollary 3.4, Cy,,;(X) is a trivial group. Then B, (X) is also

trivial. Thus, we have H,,(X) = Z),(X). Since a subgroup of a free

abelian group is free abelian, the result holds. O

Theorem 3.15. For each q > 0, H; is a covariant functor from the
category of digital simplicial complexes and simplicial maps to the
category of abelian groups.

Proof. We know that Hy(X) is defined on objects X that are digital
simplicial complexes. If ¢ : (X, kg) = (Y, k1) is a digital simplicial map,

define

0. 1 Hy(X) > H(Y)

by @.(z + By (X)) = 04(2) + By (Y), where z € Z,(X). It is easy to see

that [Lx «)) =1 and that (¢op), = ¢ o¥.. The assertion

Hy(X)

follows. O
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Figure 6. (X, 8).

Theorem 3.16. Let X = {py = (0,0), p; = (1, 0), pg = (1, 1)} < Z2
with an adjacency relation w =8 (see Figure 6). Then its digital

simplicial homology groups are

Z, q =0,

H3(X) =
a(X) {o, q # 0.

Proof. Assume that the points of X are ordered by pg < p; < ps.

From Theorem 3.14, we have
HS(X) = {0} for ¢ > 2.
Moreover, C§(X), C3(X), and C§(X) are free abelian groups with bases
{<po><p><p2>}
{ < pop1 > < P1P2 > < pops > |}, and

{ < pop1p2 > |,
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respectively. Thus, we have a short sequence

0—% 55 (x)—2—cf(x)—2— c§(x) —2—o.
Clearly, BS(X) = {0}. We have
0g(a < pop1pg >) = a( < p1pz > = < pop2 > + < pop1 >),

so Z8(X) = {0}. Therefore, H5(X) = {0}.

From the description of 09 above, we obtain

B (X) = {a(< pop1 > + < pip2 > = < pops >) | a € Z}.
Further,
01(a < pop1 > +b < popz > +¢ < pipg >)=(-a-b)<py >+(@a-c)<p >
+(b+c)<py>=0

implies a = —b = ¢, so

Z18(X) ={a(< pop1 > + < p1pz > — < pop2 >) |l a € L} = B18(X)-
Thus we have HY(X) = {0}.

Let
B={a<py>+b<p >+c<py>lia,bclcZ a+b+c=0}=27%

We have, from the description of 8; above, B$(X) < B. To show the

reverse containment, notice that an arbitrary member of B takes the form

a<pyg>+b<p >-(a+b)<py >=0,(—a< pop; >-b< ppy > )e BSX).
Therefore, Bg (X)=B= 72. Again using the short sequence, we get

Z8(X)={ag < py >+a; <p >+ay <py>la; €Zi=0,12} =75
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We claim that the quotient group Z§(X)/ BS(X) is isomorphic to one
copy of Z. Any O-cycle ¢y = ag < pg > +a; < p; > +ag < py > can be
written as

¢ = 01(a1 < pop1 > +ag < popz > )+ (ag +a; +ag) < py >.
This means that ¢ is homologous to the 0-chain (ay + a; + ag) < pg > .
Hence, the 0-chain is homologous to an integral multiple of < py > .

Therefore, Hg (X) is isomorphic to the additive group Z of integers. We

summarize

Z =0
HS(X) _ ’ q ’
0, q # 0.
Theorem 3.17. If MSCg = {¢y = (-1, 0), ¢; = (0, —-1), ¢g = (0, 1),

c3 = (1, 0)} (see Figure 4), then its simplicial homology groups are

A q=01,

H8(MSC}) =
al 8) {o, q#0,1.

Proof. Assume that there is a dictionary order relation on the points

of MSCyg (see Figure 4). From Theorem 3.14, we have Hg(MSCé) =0
for every g > 1. Moreover, CP(MSCL) and C§(MSCy) are free abelian
groups with bases

{{coer), (eres ), (eacs ), (coca )},
and

{{co)s (e1), (e2), {e3)},

respectively.
Thus, we get the following short sequence:

0—92 5 C3(MSCy)—A— C§(MSCy)—2 0.

By the short sequence, it is easy to see that
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ZE(MSCy) = {a( < coey >+ < cie3 > — < cgeg > —<coeg > )|l aeZ) =7

Since BS(MSCy) = {0}, it follows that HE(MSCg) is isomorphic to the

additive group Z of integers.
Let

B={a<cy>+b<c >+c<cyg>+d<cg>|{a,b,c dcZ,
a+b+c+d=0' =175
We show that BS(MSCy) = B, as follows. We have
01(r <cpep > +s<cieg >+t <cgeg > +u<coeg > )= (-r-u)<cy >
+(r—s)<c >+(-t+u)<cg >+(s+t)<cg >.

It follows easily that B§(MSCj) < B. In order to show the reverse

containment, we observe that an arbitrary member of B takes the form
a<cy>+b<c >+c<cg>—-(a+b+c)<cy >=
01(—a<cpe; > —(a+b)<ceg >—c<cgeg > ).
The assertion follows.
Again using the short sequence, we have
ZS(MSCE) =f{ag <cg >+a; <¢; >+ag <cg >+ag <c3 >|a; € Z}
= 74
Any O-cycle wyg =ag <cg >+a; <c; >+ag <cg >+ag <cg > can be
written as
wo = 01((—ag —ag) < cpe; > +ay < cpeg > +ag < cjc3 > )

+(a0+a1 +a2+a3)<cl > .
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This means that w is homologous to (ag + a; + ag + a3) < ¢; > . Hence,

the 0-chain is homologous to an integral multiple of < ¢; > . Therefore,

H S (MSCyg) is isomorphic to the additive group Z of integers. Therefore,

we obtain

, Z, qg=0,1,
H3(MSCy) {

0, q =0, 1.

Figure 7. (a) MSSg; (b) MSSjg; (¢c) MSSs.

Now we are ready to compute homology groups of minimal simple
k -surfaces (MSS, ).

Theorem 3.18. If
MSS;g ={co =(0,0,1),¢; =(1,1,1),¢c9 =(1,2,1), c3 = (0, 3, 1),
¢y =(-1,2,1),¢5 =(-1,1,1), ¢ = (0, 1, 0), ¢c; = (0, 2, 0),
cg = (0,2, 2), cg = (0,1, 2)},
then its digital simplicial homology groups are

Z, q =0,
H(MSS5) = {27, q=1,
0, q =0, 1.
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Proof. Let us direct MSS;g by the ordering ¢4 < c5 < ¢g < cg < cg
<7 <cg <cg < <cyg. By Theorem 3.14, H}IS(MSSIS) is a trivial

group for all ¢ > 3. Moreover, C3S(MSS;g ), C18(MSS;3), and Ci®(MSS;5)

are free abelian groups with bases

{{co)s (e1), > (co)}

{{cocr )s {cace )s {e5¢0), (coco), (erca), (cec1 ), (cger), (escq ), (cacs ), (cacs ), (csez),

(cgcs ), (csca)s (cacs ), {cacq), (ercs), (erca), (caca), (c5¢9), (cee7)}, and

{{cocacr ), (c5coce ), (cocger ), (eseaca)s (escoce ) (cacses), (cacres ), (ereaea )}

respectively. Thus, we obtain following short sequence:

0—3B 5 Cl8(MSS;g)—22—5 CI8(MSS; 5 )—2—> ChB (MSS;5 ) —20—0.

Let

d2(ar(coceer )+ ag{cocger ) +as(escocs ) + as(cscocy ) + as(creacs ) +ag(cgescs)

+ag(cqerez) +ag(eqeges)) = (—ay —ag )(coer ) +(az +ay )(esco ) +(ar +az )(cocs)

+(ag +ay Ncocg ) +ar{cser ) +ag(cger ) +(as +ag )cacz ) —as(crez ) —ag(cges)

+(= a7 —ag)(eqe3) + (a5 + ag){cres) + (ag + ag)(cses) + az(cqer)

+ag(cqcg) — aglescs) — agcscg) = 0.

From this equation, we must have a; = a9 = a3z =-- =a7; =ag =0.

Therefore, Z3%(MSS;g) = {0} and it follows that Hi®(MSS;g) = {0}.
Observe

01(ar{coer) + ag(cocs ) + az(csco) + as(cocg) + as(cica) + ag(cger) + az(cger )
+ag(csce ) + aglcacs) + arofcacs) + arr(csca) + arafcocs) + arz{cscs)

+ajgcacy) + ars{cacr) + ajg{cres) + apr(erea) + ajg(esea ) + arg(cscq)
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+ago(cee7)) = (a1 —ag +ag —ay){co) + (a1 — a5 +ag +a7){c1)
+(a5 +arp +ar7 + a1g)(ca) + (@13 + ayy + ag6 — a15)(c3)
+(-ag —ayg —a1q —ar5){cq) + (- a3 — ag + ag — arg)(c5)
+(ag —ag + ag —agg)(ce) + (a15 — a1 — ar7 + ag){cq)
+(a10 — a1y + a1z — a13)(cs) + (ag —a7 — a1z + arg )(cy).
So, we get
Z{®(MSS5) =
{a; < coey > +ag <coeg > +ag < cscp > +(—a; —ayg +ag) < cypeg >
+as <cieg > +ag <cgep > +(—a; +as —ag) < cge; > +ag < ¢z >
+ag < cqC5 > +aj < €48 > +ayp < CgCy >
+(—ag —as +ag —ag +ag) < cgcg >
+(—ag—as +ag—ag +ag +ajg —aj;) < gl > +ayy < C4C3 >
+(—ag —ajg —ayq) < cyc7 > + a1 < C7c3 >
+(az —ag +ag —ag —ayg —ayy —azp) < c7cg >
+(—ag —as +ag —ag +ag + ajg — ay; + a4 + a1g) < c3c9 >
+(—ag —ag +ag) < cseg > +(ag —ag +ag) < cgey > a; € Z) = 7.
We saw above that Ker 05 = Z38(MSS;5) = {0}. Therefore, 65 is one-to-
one. It follows that Bi8(MSS;g) = C38(MSS;g) = Z8.
Any 1-cycle
wy =aj <cpep > +ag <cpcg > +as < cxcy > +(—ap —ag +ag) < coeg >

+ag < CCyg > +ag < CgCp > +(—a1 + as —GG) < Cg9Cp > tag < C5Cg >
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+ag < €405 > +ajg < €48 > + a1 < Cgly >
+(—ag —as +ag —ag +ag) < cgcg >
+(—ag —as +ag —ag +ag +ajg —ay1) < €glg > +ayy < C4C3 >
+(—ag —ajg —a14) < cyc7 > + a1 < Cyc3 >
+(ag —ag +ag —ag —ajg —ayy —ag) < c7cg >
+(—ag —as +ag —ag +ag +ajg — a1 + a4 + a1g) < c3cg >
+(—ag —ag +ag) < c5cqg > +(ag —ag +ag) < cgey >
can be written as
wy = 09fag < cocge; > +(ag —ag) < cscocg > +(—ap +as —ag) < coegly >
+(—ag+as+ag)<cscocg >+(ag +a1g + a4 + a1 ) < CrCaCy > +aq < C4C8C3 >
+(=ap1) < cgegeg > +(—ag —ay — ayy) < eqc7c3 > ]
+as( <cpep > —<cpeg >+ < o9 > — < cglg > — < €gCy > — < €3Cy >)
+(ag —ag+ag )(<cscq >—<cglg >—< gty >+<C7Cg >—<C3C9 >—<C5Cg >+ <CgCT >)
+ag( <cycs >+ < cgtg > + < gy > — < €4C3 > + < C5C9 > ).

Since an arbitrary 1-cycle is homologous to the sum of multiples of the

three 2-chains

<cplp > — < Cplg > + < Ceg > — < €glg > — < €gCg > — < C3Cy >,
< C5g > — < Cglg > — < €gly > + < CyCy > — < €3C9 > — < C5Cg > + < CgC7 >,
and

< €yl > + < Cglg > + < Cglg > — < CyC3 > + < CxCg >,

each of which is easily seen to be a 1-cycle, it follows that Hi®(MSS;g)

=~ Z3.
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Again using the short sequence, we have
Bi8(MSS;g)={ag <cog >+ay <) > +ag < ¢y >+ag <3 >+ay <cy >

+a5<c5>+a6<cG>+a7<c7>+a8<08>+a9<09>|

a; =0,a; € Z} = 7°.

12

e

1=0
ZEPB(MSS g)=1{ag <y >+ay <¢; >+ag < ¢y >+ag <3 >+ay <cq >
tas <c5>+ag <cg>+ay <cy>+ag <cg>+ag <cg >
a; €Z,i=0,.., 9y =79
Any O-cycle wyg =ag <cg >+a; <c¢; > +--+ag <cg > can be written
as
wo =01(—ag <coey >+(ag +a; +ag +ag)<cge; >+(—ay —as—ag —ay)<cscg >
+ag < cgcg > +(ag +ag) <cieg > —ag < cgcg > —(ay +a7) < cyc5 >
+ag <cye7 > —ag <cgts > )+(ag+a; +-+ag)<cg >.
This means that wq is homologous to (ag + a; + -+ ag) < ¢g > . Hence,
the 0-chain is homologous to an integral multiple of < c¢q > . Therefore,

H}®(MSS;3) is isomorphic to the additive group Z of integers. Thus, we

have the required result

Z, q =0,
H.3(MSSg) = 177, q=1,
0, q#0,1.

O
Theorem 3.19. The digital simplicial homology groups of MSSig are

Z, qg=0,2,

H¥(MSSg) =
a (MSSis) {0, q#0,2.
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Proof. Let
MSSig ={eg =(1,1,0),e; =(0,2,0), e9 =(-1,1,0), e3 = (0, 0, 0),
ey =(0,1,-1), e5 = (0,1, 1)}.
The points of MSSig are directed as follows:
eg <eg <ey <e5<e <e
From Theorem 3.14, it is clear that
H®(MSSig) = 0, forall ¢ > 2.

Moreover, C{8(MSS]g), C1®(MSS;g), and C38(MSS]g) are free abelian

groups with bases, respectively,
{{e0). (e1): (e2). (e3). (ea). (e5)}
{{eqe1), (eren), (eseq), (ezeq), (eger), (ezeq), (ezes), (ezeq), (eser),
(eseq)» (eze5), (eses )},

and
{(esereq), (eaeser ), (ezezes ), (ezeqen ), (eseren), (ezeser). (eaeses ), (ezeseq) -
Thus, we get the following short sequence:
0—% 5 CI8(MSS]g)—22—5 CI8(MSS]g ) —— CAB (MSS]g ) —20—0.

We first find the kernel of d5. We have
02(a1(eqereq) + ag(egeqer ) + ag(egezey ) + ayglegeqeq) + as(esereq) + aglegeser )
+ag(egezes ) + ag(esese ) = (a1 + ag)(eser) + (a1 + a5 )(ereq)
+(—ay +ay)(eqeq) + (ag —az)(egeq) + (- ag —ag){eger ) + (az +ay )(egeq)
+(ag +a7)(ege3) + (- ay —ag)(eze) + (a5 + ag)(eser) + (— a5 + ag){esep)
+(ag — a7){eges) + (a7 + ag)({eges). (3.1)

Solving the equation
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(a1 +ag)(eser) + (ar +as)(ereg) + (- a1 + ay)(esen) + (ag —az)(egeq)
+(—ag —ag){eger) + (ag + ay){ezes) + (ag + a7 )(ege3) + (- ay —ag){esep)
+(a5 +ag)(eser) + (- a5 + ag)(ese) + (ag —ag)(ezes) + (a7 + ag)(eges) =0,
we must have
a =—Q9g =—Qa3 =ay =—Q5 = ag = A7 = —ag.
Hence,
Z3°(MSSig) = {a((eseren) — (eseser ) — (egeseq) + (egeqeq) — (esereq )
+(egeser ) + (egeses ) — (eseseq)) l a € Z} = Z.
Since BY®(MSS]g) = {0},
HY®(MSSig) = Z.

Let
01(ar{eqer) + ag(ereg) + agleseq) + aygfegey) + az(eger) + aglegeq ) + az(ezes)

+ag(eseg) + aglese; ) + ajoleseq ) + a1{eses ) + aja(eses)) = 0.
Then, we get
(ag +ag+ag +ayg)(e)+(ay —ag +as +ag)(e;)+(-ay —as —a7 —ay; )(ez)
+(—ag+a7—ag—aip e )+(—a; —ag+ay +ag )(eq)+(—ag —ajg+a; +arz )es)=0.
Solving the equation above, we must have

Qg = Q) + Qa3 —Qy,

Qg = —Q1 +ag —as,
ajp = —Q@g —ag —as;,
a1 = — a4 — a5 —ar,
Qg = —ag tay —ag = —a; —ag +a4 +ay; —ag.

Hence, we get
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ZI8(MSS]g) = {a; < eqe; > +ag < ejeg > +ag < eqeq > +ay < egey >
+as < ege; > +(a; +ag —ay) < egey > +ag < egeg >
+ag < eszey > +(—a; +ag —as) < ese; >
+(—ag —ag —ag) <eseg > +(—ay —as —ay) < eges >
+(-a; —ag +ay +a; —ag)<eses >la; €eZ i=1,2,3,4,5,17, 8}
=7
On the other hand, from the Equation (3.1), we have
BI8(MSS]g) = {hy < ege; > +hy < ejeg > +hg < eqeq > +hy < egey >
+hs <ege; >+(h +hg —hy) <egeqy >+hy < egeg >
+hg <eseg >+(—hy +hg —hs) < ese; >
+(—hg —hy —hg) <eseg > +(—hy —hs —hy) < eges >
+(=hy —hy+hy+hy—hg)<eses >|h €Z i=1,23 4,5 7,8}
=7

Since BI8(MSS;g) = Z1®(MSS;g), it follows that Hi®(MSSjg) is

isomorphic to the trivial group.

Again using the short sequence, we have
ZEB(MSSjg) = {ag < eg > +a; < e] >+ay <eg >+a3 <eg >+ay < eq >
tas <es>la;eZ i=0,1,..,5}

=~ Z6.
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Cq4 - C7

Figure 8 [16]. MSS;.

Any O-cycle wg =ag <ey >+a; <e >+-++as < e; > can be written

as

wo = 61(—01 <ejepg > —ag <egesg > —(GZ +a3)< esen > —ay <eygeny>—0ap < ez >)
+(ag +a; +ag +ag +ay +as) <ey > .

This means that wy is homologous to (ag +a; +--+as)<ey > .

Hence, the 0-chain is homologous to an integral multiple of < ey >.

Therefore, H{®(MSS]g) is isomorphic to the additive group Z of

integers. Therefore, we have the required result

Z, q=02

H®(MSSs) =
a (MSSis) {0, q#0,2.
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Theorem 3.20. Let MSSg = {cy =(0,0,0),¢; =(1,0,0),c9 =(1,1, 0),
c3 =(0,1,0),¢cq =(0,0,1), ¢c5 =(1,0,1), ¢ =(1,1,1), c; = (0, 1, 1)} (see
Figure 8). Then its digital simplicial homology groups are

Z, q =0,
HS(MSSg) =12°,  q=1,
0, q #0,1.

Proof. Assume that there is a dictionary order relation on the points

of MSSg. From Theorem 3.14, we have Hg(MSSé) = {0} for every

q > 1. Moreover, C5(MSSj) and CP(MSSj) are free abelian groups

with bases
{{co) (e1), {e2), (e3), {ca), {c5), (cq), (c7)}, and
{(coc1), (coca)s (cocs)s (erea), (ercs), (cace ), (caez ), (eser), (cacs),
(eqer), (es5c6), (c7¢6)},
respectively. Thus, we get the following short sequence:

0—2 5 Cf(MSSy)—A— CE(MSSy)—L 0.
01(ar(coer) + ag(coey ) + az(cocs) + ag(ciea) + az(cics) + ag(cacs) + ag{caey)
+ag(cger) + ag(cqcs ) + ajofcacy) + ari(csce ) + ara{crcs)) = (- ay —ag —ag){co)
+(ay —ag —as){c) + (ay —ag +a7)(cg) + (ag — a7 —ag){c3)
+(ag —ag —ay)(eq) + (a5 —aro + ar2){cs) + (ag + aro + ar1)(cs)
+(ag +ag —arp){e7).

Solving the equation
(a1 —ag —ag){co) + (a1 —ay —as)(c1) + (ay —ag +a7){cz)

+(ag —ag —ag)(cz) +(ag —ag —ayg)(cqa) + (a5 — a9 + arg)(cs)
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+(ag + a9 +a11)(ce) + (ag +ag —ar1){c7) = 0,

we have

ag = —0Q1 —Q9, A5 =0A1 —Qy, Q7 = —Qy +a6, ag = —Qa1 — Q9 +a4 — Qg,

Q190 =09 —Qg, Q1] =—0Q1 —Qg +Qy —Ag+0Ag, Q19 =—Qg — Q1] =—01 +Qy — Qg —QAg.

Hence, we get

ZP(MSSg) = {ay{coer) + ag{eoes) + (- ay — ag){coes) + ag(ercs)

+(ag —ay ){eics) + ag(cace ) + (- ag +ag ){cgea) + (- ay —ag +ay —ag)(czer)

+ag(cqcs) + (ag —ag)(cser) + (a1 —ay +ag)(csce)

+(-a; +ay —ag —ag){cicg) | a; e Z) = 7°.

Since Bf(MSSy) = {0}, it follows that HY(MSSy) = Z°.

Again using the short sequence, we have

ZE(MSSE) =1{ag <co >+a; <c¢; >+ag <Cy >+0ag <C3 >+ay <y >
+tas <cs >+ag <cg >+ay <cy>|a; €L}
= 78.

Any O-cycle wy =ag <cg>+a; <c] >+0a9 <Cg >+0a3 <C3>+ay <C4q >

+ag <c5 > +ag <cg >+ay <cg > can be written as
wo = 01((ag + ag + a5 +ag) < cpe; > +ag < cieg > +(ag +ay) < coeg >

+ay < CpCqy > +(a5 +a6)< C1C5 > + Qg < C5Cg > +Q7 < C3C7 > )

+ aQ; <cy >.

-

=0
Thus, wg is homologous to the 0-chain

(ag +a; +ag +as +ay +as +ag+ag)<cy > .
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Hence, the 0-chain is homologous to an integral multiple of < ¢y > .

Therefore, H g (MSSg ) is isomorphic to the additive group Z of integers.

Therefore, we obtain

Z, q=0,
HS(MSSg)=42°, q=1,
0, q=0,1.

4. Euler Characteristics of Digital Images

Han [16] has defined the Euler characteristic of a digital surface. In
this section, we will define Euler characteristic for digital images in

general. We will imitate the definition from algebraic topology [23].
The following is a generalization of ([16], Definition 12).

Definition 4.1. Let (X, k) be a digital image of dimension m, and for
each ¢ > 0, let a, be the number of digital (k, q)-simplexes in X. The

Euler characteristic of X, denoted by %(X, k), is defined by

(X, 5) = ) (1) 0.
q=0

The following result, a generalization of ([16], Theorem 5.1) is

motivated by its Euclidean analogue.

Theorem 4.2. If (X, k) is a digital image of dimension m, then

2(X, k) = Z(_ 1)?rank Hf (X).
q=0

Proof. Consider the digital chain complex C; (X)

0Ly €5, (X) 1 €,y (X)— .. —— CF (X)—25 G (X)—20.
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Each Cg(X) is a free abelian group of rank o,. Since
Hy(X) = Z5(X)/ By(X), we have
rank Hg (X) = rank Zj; (X) - rank By (X).
For each g > 0, there is an exact sequence
0 > Zy(X) » Cy(X) - By_1(X) > 0,
and

o, = rank Cy(X) = rank Zg (X) + rank By_;(X).

q
Hence, we get
w(X, k) = Z(— 1)7a, = Z(— 1)?(rank Z(X) + rank BS_;(X))
q=0 q=0
= > (-1)7rank Z§(X)+ Y (- 1)rank Bj_;(X).

q=0 q=0

Changing index of summation in the last sum and using the fact that

rank BY(X) = 0 = rank By, (X), we have

(X, k) = D (- 1)rank Z(X) + Y (-1)" rank B (X)
q=0 q=0

D" (- 1) (rank Z§ (X) - rank Bj (X))
q=0

m

= > (-1)7rank H(X).

q=0
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Figure 9 [16]. MSSlgﬂMSS]_S.

Theorem 4.3. If (X,kg) < Z™ and (Y,k;)c Z™ are (kg, K1)-

isomorphic, then
X(X’ I<‘“O) = X(Y’ K1 )

Proof. Let X and Y be (k(, k1 ) -isomorphic. Then, by Theorem 3.12,

their homology groups are the same. From Theorem 4.2, the result holds.
O

Example 4.4. From the definition of Euler characteristics, we have
x(MSSg, 6) = g — 0y = 26 — 48 = — 22 (see Figure 7).
x(MSSg, 6) = ag —a; = 8—-12 = —4 (see Figure 8).
x(MSS;g5,18) = ag — g + a9 =10 — 20 + 8 = — 2 (see Figure 7).
x(MSSig,18) = ag — 0oy + a9 = 6 —12 + 8 = 2 (see Figure 7).
x(MSSgtMSSg, 6) = g — o = 42 — 80 = — 38 (see Figure 10).

x(MSS;giMSS;g,18) =g —0q +ag =14 — 28 + 8 = —6 (see Figure 9).
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Note that the last assertion of Example 4.4 corrects ([16], Example
5.3).

Example 4.5. We can alternately compute Euler numbers by using
Theorem 4.2.

From Theorem 3.18,
7(MSS,g, 18) = rank HL®(MSS;g) — rank H{®(MSS;g) =1-3 = - 2.
From Theorem 3.19,
x(MSS]g, 18) = rank H{®(MSS]g) - rank H1®(MSS;g) + rank H3®(MSS;s)
=1-0+1=2.
From Theorem 3.20,

+(MSSj, 6) = rank HS(MSSy) — rank HY(MSSy) =1-5 = — 4.

{I’_—_‘ (l35 df‘-I (IS (l3 2
L2 - 9 —» P
das dss - E dy; = 1 dsg .
.I '-'-. : .--.' : & d . (l;]_
(l-__\' (ST L X {l:s - ‘: ll-z_u ML ] 30
; ® — T $
i 3 . d?] | d:l .o (l]_n;
ettt e | -8
dy» T i ' L BRUTY P
i _.,. - T'!' L = i b
dys - dyyt dyz | ” dizt | dy-
- -1+
i dio I HEL ) ‘(lr
dll E [I". ....-:..::‘..;.. ....-.;.:.. d... [ - e T ...I.
: iy L gl . - sod -+ dg
; e : = T ."'. ds
d, (11. (l;. ﬂs. 114-

Figure 10 [16]. MSSgiMSSg.

5. Further Remarks

We have studied the simplicial homology groups of digital images. In

Section 3, we focused our attention on computing homology groups of

certain fundamental digital images by what might be termed direct
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methods, based on their definitions. In Section 4, we obtained several

results concerning the Euler characteristic of a digital surface, including

the correction of an assertion that appeared in [16].
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