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Abstract

Using semi-groups theory, regularity results and a theorem associated to the
Lumer Phillips theorem, we prove the existence of global solution for a coupled
wave system. Also, using multiplicative techniques and the classic Gearhart
theorem, introduced in Liu-Zheng [7], we prove that energy associated to the
system decays exponentially to zero when ¢ — +o. Here, we give two new and

interesting proofs.

Stability for a coupled wave system has been considered in [13], where they
used Pris result [12].

1. Introduction

The study of asymptotic behaviour for dissipative systems is a very
productive researching field in partial differential equations. In this way,
to obtain rates of decay, some analytic techniques were used by several

authors, for example, the Komornik method [5], the Nakao method
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[10, 17, 18, 19], and the energy method [8, 14]. In this paper, we use
another analytic technique introduced by Zheng [7], which is also applied
to dissipative problems, like [15, 16]. This powerful -and apparently
simple-method consist in exploring the dissipative properties of the semi-

group C, associated to the system, through the resolvent of its

infinitesimal generator.

Since E(t) the total energy associated to coupled wave system,
1 2 2 2 2
E() = §JQ{|V”| +lug? + Vo + o, P dx,

have a non positive derivative, that is E'(¢) < 0, the system is dissipative.

Then, we want to know if E(f) > 0 when ¢ — +o, and what is its

decay rate?. The answer is affirmative, that is, there exist positive

constants C and y such that

E(t) < CE(0)e™ for every t > O.

This result extend the one in [9] in the sense that we allow higher

dimension spaces and variable friction coefficient.

Remember that if o is a constant, then the stability result is satisfied

to the model
Uy — Uy +0u; =0,
we can cite [16]. And also, it is true to the model
Uy — Uy, + o(x)y = 0.
It can see, for example, in [3, 4, 19].

Stability for coupled wave system has been considered in [1, 2, 6, 9, 13]

among others.

Thus, our main goal is to prove the existence and uniqueness of global

solution of a coupled wave system and its exponential stability.
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We prove the existence of global solution for a coupled wave system
by using semi-groups theory. Here, we give a full proof. Also, using
multiplicative techniques and the classic Gearhart theorem, introduced in
Liu-Zheng [7], we prove that energy associated to the system decays

exponentially to zero when ¢ — +o. Here, we give two interesting proofs.

Our paper is organized as follows. In Section 2, we state the
preliminary results that we will use. In Section 3, we prove the existence
and uniqueness of global solution. In Section 4, we prove the exponential

decay of the solution.
2. Preliminaries

To prove existence of solution, we will use a result associated to
Lumer Phillips theorem. Here, we state this important result. The proof

can be seen in Pazy [11].

Theorem 2.1. Let A be a linear operator with domain D(A) dense in
a Hilbert space. If A is dissipative and 0 € p(A), then A is the
infinitesimal generator of a C, semi-group of contraction in this Hilbert

space.

We know that the problem of providing an estimate to the energy
E(t) of the form

E(t) < CE(0)e™ ™, vt >0,
is equivalent to providing exponential stability for semi-group S(¢)
IS@)| < Ce ™, vt >0,

we cite Liu-Zheng [7].

A necessary and sufficient condition for a semi-group C, to be

exponentially stable is given by the following result:
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Theorem 2.2 (Gearhart). Let (S(t)),., be a C, semi-group of

contraction in a Hilbert space. Then, (S(t)),s, is exponentially stable (that

is, AM > 1, u > 0 such that |S(t)| < Me™, Vt > 0), if and only if
() p(A) o iR = {iB, p € R},

() lim sup‘m_m”(iﬁl - A)! | < e

We will, respectively, use Theorems 2.1 and 2.2 to prove existence of

solution and exponential stability of a coupled wave system.

3. The Abstract Cauchy Problem and
Existence of Solution

Here, we study the following system of coupled wave equations:

wy — Au+alx) (@ —v;) =0, (x,t)e QxR (3.1)
vy —Av—a(x)( —v) =0, (x,t) e QxR", (3.2)
u(x, t) =v(x,t) =0, (x,t)edQxR", (3.3)
u(x, 0) = uy(x), u;(x, 0) = uy(x), x e, (3.4)
v(x, 0) = vy(x), vy(x, 0) = v1(x), xeQ, (3.5)

where Q c R” is a bounded domain with smooth boundary 6Q. Here o is
a function such that o € WH*(Q), a(x) > 0 in Q and JQa(x)dx =aq > 0.
This means that a(x) can vanish at some points of Q, but the measure of
this support is positive.

To get the energy associated to the system, multiply (3.1) by u; and

integrate on Q, having

lij. {|ut|2 + |Vu|2}dx +J. a(x)(u, —v;)udx = 0, (3.6)
20t Jo fe)

also multiply (3.2) by v; and integrate on Q to have
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10 9 9 )
QEJ‘Q{lvtl +|Vu]” dx - Iga(x) (u; — vy )vdx = 0.

Summing (3.6) with (3.7), we get

o1
ot 2

Let

E) =5 [ (el +fo + 9 Vol e,

be the energy associated to the system (3.1)-(3.5). Then
EQ) =~ _ol)u, — v,
Q

and since a(x) > 0, we have
E'(t) <0,
that is, the system is dissipative.
With this E(¢) in mind, we introduce the following space:
X = H{(Q) x L2(Q) x H}(Q) x L*(Q),
endowed with the norm

Wl = [ _vul? +lof? +[vi® + o},

for U = (u, o, v, w)T e X.
We remark that X is endowed with the scalar product
< U, Uy >x =< Vuy, Vug > + < 91, 99 >

+ < Vup, Vug > + < ¥q, ¥g >,

J Jug|? + v, | + |Vif? +|Vo|? }da +I ax) |y, — v, [Pdx = 0.
Q Q

33

3.7

(3.8)

(3.9)

(3.10)
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where

Ui: EX,

Y;

parai =1, 2,

and < -, - > denotes the scalar product in LZ(Q). Thus, X is a Hilbert

space.

Define

Q= Uy,

w = Ut’

then system (3.1)-(3.5) can be simplified to the following initial value

problem or first order evolution equation on X:

U(0) = Uy = (ug, 1y, vy, 07 )7,

U, = AU(),
(AC)
with
0 I
A —al
A =
0 0
0 ax)I

D(A) = (H*(©@) N H(Q) x Hy(@) x (H*(Q) N H(Q)) x H(Q),

and U = (u, ¢, v, w)T.

So, we have the following result:

0

A

0
a(x)l
I

—alx)I

(3.11)

(3.12)

(3.13)



GLOBAL EXISTENCE AND EXPONENTIAL ... 35

Theorem 3.1. The operator A defined on (3.12)-(3.13) generates a C,
semi-group of contractions (S(t));so in the Hilbert space X.

Proof. Clearly D(A) is dense in X. Taking the scalar product of AU

and U and using the Green’s identity, we have
< AU,U > =< Vu, Vo >
+ < (Au—oalx)e + a(x)y), ¢ >
+ < Vv, Vy >

+ < (alx)e + Av — afx)y), v >

< Vu, Vo > - < Vu, Vo >

- < ax)e, ¢ >+ < alx)e, v >
+<Vu, Vo > + < alx)y, ¢ >
- <Vy, Vo > - < ax)y, v >

- <a®)e, 0> +2<alx)e, v >

- < a(x)y, v >

—j a(x){e? - 20v + p? }dx
Q

- j a(x)|o - v2dx < 0,
Q

then A is dissipative.
We claim that 0 e p(A). In fact, we will prove that 3A™! e L(X).
Let F =(fi, fa, f3, fs) € X. We will prove that there is U € D(A)
such that AU = F, where U = (u, o, v, w)T. Thus, we have
¢ =f, (3.14)

Au+ olx){p — o} = fo, (3.15)
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¥ = f3, (3.16)
Av—olx){y — o} = f4. (3.17)
Then ¢ = f; and ¥ = f3. From (3.14) and (3.16) in (3.15), we get
Au = a(x){fi = f3} + fo (3.18)
Then, by elliptic regularity results, exists a unique solution u in H(l) (Q)
N H?(Q). Now, using (3.14) and (3.16) in (3.17), we obtain
Av = —ofx){f ~ fa} + [y (3.19)
From elliptic regularity results, exists a unique solution v in H(l)(Q) N
HZ%(Q). That is, exists U e D(A) such that AU = F.
By other hand, if AU = 0, where U = (u, ¢, v, w)T e D(A), we have
¢ =0,
Au + o(x){p — @} = 0,
v =0,
Av —a(x){p - ¢} = 0,
then ¢ =0 and yp = 0. Also, Au =0 and Av = 0 imply © =0 and v = 0.
Then exists A7, Now, we prove that A7 is continuous.

Multiplying (3.18) and (3.19), respectively, by u«, v and integrating in

Q, we have

—J |Vu|2dx:'[ Au~udx:J. oc(x){fl—fg}-udx+J. fo - udx, (3.20)
Q Q Q Q

—J |Vv|2dx:'[ Av~vdx=—J. a(x){fl—f3}-vdx+J‘ fy -vdx. (3.21)
Q Q Q Q

From (3.20) and using Holder and Poincaré inequality, we obtain
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0< IQ|Vu|2dx = —JQa(x){fl —f3}-udx - Igf2 ~udx

_ Uga(x){f1 —f3}~udx+JQf2 ‘uwdx

<

+

RECERARTE
Q

JQf2~udx

< [ a1 - foblddx + [ _|folluld

1

< |Q|E(JQG(X){f1 - f3 }2dxj lulr2 +|falp2 U2

po |-

b |~

1
< |oc|30chQOL(x){f1 - f3}2dxj Va2 + eplfa] 2V 2
1 1
< |a|ooc§,UQa(x){f1 — fa }2de r gVl + IR, + 4 Val,

_ |a|wc§,(jga(x){f1 A }2dxj v Il + SVl

That 1s,
JQ|Vu|2dx < 2|oc|aoc% U‘Qa(x){fl —f3 }2de + 2c§|f2|i2. (3.22)

Analogously, from (3.21) and using Holder and Poincaré inequality, we

obtain
IQ|VU|2dx < 2|oc|oocl2J (Iga(x){fl —fs }2dxj + 20§|f4|i2. (3.23)

Adding (3.22) with (3.23), we have
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[ wuPdx+ [ [woPax < 4ol [ [ o) -1 }dej + 22| I2, + 232
Q Q —>22Ja I I

(3.24)

Multiplying (3.18) and (3.19), respectively, by f; and f3, we have
Au-f = alx){fi - f3}h + foh, (3.25)
Av- fy = —alx){fy = f3}fs + fufs- (3.26)

Adding (3.25) with (3.26) and integrating in Q, we have
[ o) - e = [ {au-fiav-fo - foh - fifiye. 327

From (3.27), Green’s identity and using Holder and Poincaré inequality,

we obtain

0< [ al)ih~fide = [ 1= Vu VA - Vo Vfy - i - fufy}d

= UQ{W Vfy VUV + foh + fufy b

<

+

Q

J. Vu - Vf3dx
Q

+ +

IQf2f1dx JQ fafsdx

< |Vl 2|VA|2 + VU2 Vsl 2 + | fal 2] A2
+|falp2lfsl 2
< |Vu|2|Vh |2 +|V| 2| V3|2 +cplfal2| VA2

+cplfyl 2| Vsl 2 (3.28)
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That is,
cljga(x){fl — fyPdx < Vil 2 G|V |2 + VUl 2 G|V 2
+eplfal2 CiIVA IR + cplfal2 CiIVEsl 2
1 2 9 2 1 2 2 2
< Zlvule + Cl |Vf1|L2 + Zlvvle + Cl |Vf3|L2

|2

2 1 2
2t ClZlvflle + chlﬁl

1
+olfe 2, + CEIVA [,

1 2 2 2 1 2 2 2
< Z|Vu|L2 + 2C]_ |Vf1|L2 + Zlvvle + 2C1 |Vf3|L2

1 2,2 1 2/, 2
+ Zcplfgle + ZCp|f4|L2. (329)
Using (3.29) in (3.24), we obtain

%{ j Vs + JQ|VU|2dx} < 20|V, + 2CE VAL,

9 2/,.2 9 2,2
+Zcp|f2|L2 +Zcp|f4|L2‘
That is,

8 8
[ Ivalds « [ il < SCPVAL, + 3 CEIVAL,

20412 2 2
+ 3Cp|f2|L2 + 3Cp|f4|L2- (3.30)
Finally, we have

8 8
[ ivu? v < |61 + | Ydx < 3 CPIVAL, + 3 CIVEy

| 2
I? I?

2
=[x

2 2 2 2
+ 3Cp|f2|L2 + 30p|f4|L2
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2

2
+ Cplvflle

2 2
+ Cplvf?)lLQ

< C2 VAP + IR 410 + 1o

2
< CI|F)x-
That is,
|A'F|x = Ul < C.|Flx-

Finally, using Theorem 2.1, we conclude that A is the infinitesimal

generator of a C, semi-group of contraction (S(t)),5o. And so, the

abstract Cauchy problem
U, = AU,
U()=U, € D(A),

has one unique solution U(t) := S(¢)U,. O

4. Exponential Stability

Next theorem is the main result.

Theorem 4.1. The C, semi-group of contractions (S(t)),s, generated

by A, is exponentially stable.
Proof. We will use Theorem 2.2. First, we will prove
p(A) o iR = {iB, B € R}. 4.1)
Suppose (4.1) is false, then exists B € R, B # 0 such that i € o(A).
Since 0 e p(A) and A™! is compact, o(A4) = 6,(A). That is, the
spectral values are eigenvalues. Then, iff € 5,(A).
Let U = (u, v, v, 9)' € D(A), U # 0, such that GBI — A)U = 0, i.e.,

AU = ipU. (4.2)
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Taking the scalar product of (4.2) with U, and taking its real part, we

obtain
< AU, U >x = i|Ul%.
Re < AU, U >x =0.
That 1s,

J. ax)| — y*dx = 0.
Q

Using definition of A, (4.2) holds if and only if

¢ =By, (4.3)
Au + ax){p - o} = iBo, 4.9
¥ = ifu, (4.5)
Av - o(x){y — ¢} = By, (4.6)

that is, ¢ = ifu and v = ipv.

Multiplying (4.4), (4.6), respectively, by ¢, ¥ and integrating in Q,
then using (4.3), (4.5), respectively, we obtain

iBJQ(p2dx = JQAu(pdx + IQa(x){w - ¢}odx
= [ @ + [ a@)lo - ojpds

- isjgwuﬁdx ; Iga(x){w - plods, 4.7)
and

iBJ.Qw2dx = J.QAvwdx - Iga(x){w - olpdx

_ j  (80) o) - j )y~ gl
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= - iBJ |Vv|2dx - j a(x){y - olpdx. (4.8
Q Q
Adding (4.7) and (4.8), we have
ip I Q{|Vu|2 1 0% + Vo2 +v?dx = -I el - o\ dx.
That 1is,
. 2 2
iBlUJ = [ o)y - o)dx = 0
Thus U = 0, which is a contradiction since U # 0. Therefore, iR < p(A).

Now, we will prove that

lim sup [|iBI — A) 7} < . (4.9)

‘ﬁ‘—)oo
Suppose (4.9) is false, 1.e.,

lirr‘l sup ||(iBI — A) | = oo, (4.10)

IB|—>o0

then exist sequences V,, € X and B,, € R such that |(iB,,] — 4)V,,|
> m|V,,|, vm > 0.
Thus if,, € p(A), or equivalently 3(iB,,I - A)™' e L(X), that is,
3U,, € D(A) such that (iB,,I - A)U,, =V,,, |Un|=1.
So, we have
Up = (Bl = A) 'V,
and

[Un| = ml| Bl — A)Un |
Gp=

Then 1 = |U,|| = m||G,,|, ie., > |G, |- And taking m — o, we get

1
m

lim,, ;. G, =0 onX
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Now, let U,, = (&, ®pys Upps ¥ ). . Then
<G,, U, >=<ip,U, -AU,, U, >
= Bp||Unl*- < AU, U, >. (4.11)
Taking real part on inequality (4.11), we have
-Re< AU,,,U,, >=Re<G,, U, >

and then

JQa(x)|@m — v Pdx = Re < Gy, Uy > < |G [|U |l = |G|l = 0, (4.12)
since < AU,,, U, > = —an(x)|(pm - wm|2dx. Thus

J a(x) @ — ¥ |?dx — 0 when m — +oo. (4.13)
Q

Now consider equality (4.11) and multiply by i,

—BulUnl? —i < AU,,, U,, > =i< G,,, U, >. (4.14)
| S —— —_—

=ont(x)\q)m—vm \zdx -0

Since | < G, Uy, > | < |G| |Unl = |G| > 0 and, from (4.13),
U |* — 0 when m — o, we get to 1 = 0, which is a contradiction.

Thus, by Theorem 2.2, we conclude that (S(t)),, is exponentially

stable.

We give another proof of (4.9). We know that if € p(A), then given
F € X exists U € D(A) such that

GBI - A)U = F. (4.15)

Denoting F = (f, fa, f3, fa )T, from (4.15), we obtain
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iBu—-o=fi, (4.16)
iBo — Au + ofx){o - v} = fy, (4.17)
iBv -0 = fs, (4.18)
iBy — Av - alx) {o — ¥} = fy. (4.19)

Multiplying (4.16), (4.17), (4.18), (4.19), respectively, by —Au, ¢, — Av, ¥

and then integrating in Q and using Green’s identity, we obtain

iBIQ|Vu|2dx + J‘Q(pAu dx = JQ (Vu)Vfidx, (4.20)
iBj o%dx — J. (Au)o dx + j a(x){p - viedx = J. foo dx, (4.21)
Q Q Q Q
iBI |Vv|2dx + I YAv dx = I (Vf3)Vu dx, (4.22)
Q Q Q

iBJ. p2dx - J. (Av)y dx — J. a(x){p — ey dx = I fa¥ dx. (4.23)
Q Q Q Q
Adding these four equality, we have

iBI (Va2 + o2 + [Vul% + p2}dx + j a(x) o — p|2dx

o) o)
= I (Vu)Vfidx + I ofodx + I (Vu)Vfsdx + I Yfadx.
Q Q Q Q
That 1s,
iB|U1% +j a(x)|o - v2dx = < U, F >x .
Q

Taking its imaginary part and using Cauchy-Schwartz inequality, we

have

2
BlUlx = Im < U, F >x <|Ulx|Flx-
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Then
BlUIx < [Fx,
that is,
. -1 1
|GBT = 4) " F| =[Ulx < 5 1Flx,
le.,
. - 1
GBI - A < 5
O
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