THE CHARACTERIZATION OF NULL GENERALIZED HELICES IN 5-DIMENSIONAL LORENTZIAN SPACE

ESEN İYİGÜN

Department of Mathematics
Art and Science Faculty
Uludağ University
16059, Bursa
Turkey
e-mail: esen@uludag.edu.tr

Abstract

In this paper, we study null generalized helices by describing in view of harmonic curvatures to a null Frenet curve of osculating order 5 in 5-dimensional Lorentzian space by using the Frenet frame consisting of two null and three space-like vectors from [3].

1. Introduction

Let \(x = (x_1, x_2, x_3, x_4, x_5) \) and \(y = (y_1, y_2, y_3, y_4, y_5) \) be two nonzero vectors in Minkowski 5-space \(\mathbb{R}^5_1 \). We denote \(\mathbb{R}^5_1 \) shortly by \(\mathbb{L}^5 \).

For \(x, y \in \mathbb{L}^5 \),

\[
\langle x, y \rangle = -x_1y_1 + \sum_{i=2}^{5} x_i y_i,
\]

2010 Mathematics Subject Classification: 53C40, 53C42.

Keywords and phrases: harmonic curvature, null curve, null helix.

Received September 28, 2012

© 2012 Scientific Advances Publishers
is called Lorentzian inner product. The couple \(\{ \mathbb{R}^5_1, \langle \rangle \} \) is called Lorentzian space and briefly denoted by \(\mathbb{L}^5 \). Then a vector \(v \) of \(\mathbb{L}^5 \) is called

(i) time-like if \(\langle v, v \rangle < 0 \),

(ii) space-like if \(\langle v, v \rangle > 0 \) or \(v = 0 \),

(iii) null (or light-like) vector if \(\langle v, v \rangle = 0, v \neq 0 \).

An arbitrary curve \(\alpha = \alpha(t) \) in \(\mathbb{L}^5 \) can be locally be space-like, time-like or null (light-like), if all of its velocity vectors \(\alpha'(t) \) are, respectively, space-like, time-like or null [6].

2. Basic Definitions

Definition 1 [6]. On a semi-Riemannian manifold \(M \subset \mathbb{L}^5 \), there is a unique connection \(\nabla \) such that

\[
[V, W] = \nabla V W - \nabla W V,
\]

and

\[
X \langle V, W \rangle = \langle \nabla_X V, W \rangle + \langle V, \nabla_X W \rangle,
\]

for all \(X, V, W \in \chi (\mathbb{L}^5) \). \(\nabla \) is called the Levi-Civita connection of \(\mathbb{L}^5 \).

Definition 2. Let \(\alpha : I \rightarrow \mathbb{L}^5 \) be a null curve in \(\mathbb{L}^5 \). The curve \(\alpha \) is called Frenet curve of osculating order 5, if its 5-th order derivatives \(\alpha'(t), \alpha''(t), \alpha'''(t), \alpha''''(t), \alpha''''''(t) \) are linearly independent and \(\alpha'(t), \alpha''(t), \alpha'''(t), \alpha''''(t), \alpha''''''(t) \) are no longer linearly independent for all \(t \in I \).

For each null Frenet curve of osculating order 5, one can associate an orthonormal 5-frame \(\{ T, N, W_1, W_2, W_3 \} \) along \(\alpha \) (such that \(\alpha'(t) = T \)) called the Frenet frame and functions \(\{ k_1, k_2, k_3, k_4, k_5 \} \) called the Frenet curvatures. Thus from [3], the Frenet equations of a null curve in a 5-dimensional Lorentz manifold are written down as follows:
where \mathcal{V} is the Levi-Civita connection of \mathbb{L}^5; h and $\{k_1, k_2, k_3, k_4, k_5\}$ are differential functions; T and N are null vectors; W_1, W_2, and W_3 are space-like vectors. In these equations by changing a suitable parameter t, we may take $h = 0$ and other equations stay unchanged. This parameter is called distinguished parameter of the curve [3]. That is,

$$\begin{align*}
\nabla_T T &= hT + k_1 W_1, \\
\nabla_T N &= -hN + k_2 W_1 + k_3 W_2, \\
\nabla_T W_1 &= -k_2 T - k_1 N + k_4 W_2 + k_5 W_3, \\
\nabla_T W_2 &= -k_3 T - k_4 W_1, \\
\nabla_T W_3 &= -k_5 W_1,
\end{align*}$$

(1)

From [3] again, since T and N are null vectors, $W_i, 1 \leq i \leq 3$, are space-like vectors, then we have

$$\begin{align*}
\langle T, T \rangle &= 0, \quad \langle N, N \rangle = 0, \quad \langle T, N \rangle = 1, \quad \langle T, W_i \rangle = 0, \quad \langle N, W_i \rangle = 0, \\
\langle W_i, W_j \rangle &= \delta_{ij} = \begin{cases}
1, & i = j, \\
0, & i \neq j,
\end{cases} \quad \text{for } i, j = 1, 2, 3.
\end{align*}$$

(2)

Definition 3. If a null curve $\alpha : I \rightarrow \mathbb{L}^5$ is a null Frenet curve of osculating order 5 and Frenet curvatures $k_i, 1 \leq i \leq 5$ are nonzero constant, then α is called a null W-curve of rank 5.
3. Null Generalized Helices in \mathbb{L}^5

Definition 4 [8]. Assume that $\alpha \subset \mathbb{L}^5$ is a null generalized helix given by curvature functions k_1, k_2, k_3, k_4, k_5. Then the harmonic curvatures of α in \mathbb{L}^5 write down as follows:

$$H_i = \begin{cases} -\frac{k_2}{k_1}, & i = 1, \\ \frac{H'_1}{k_3}, & i = 2, \\ -\frac{k_4}{k_5} H_2, & i = 3. \end{cases}$$

(3)

Definition 5 [4]. Let α be a time-like curve in \mathbb{L}^5 with $\alpha'(s) = V_1$. $X \in \chi(\mathbb{L}^5)$ being a constant unit vector field, if

$$\langle V_1, X \rangle = \cosh \varphi \ (\text{constant}),$$

then α is called a *general helix* (inclined curves) in \mathbb{L}^5, φ is called *slope angle*, and the space $Sp\{X\}$ is called *slope axis*.

Definition 6 [8]. A null curve $\alpha : I \rightarrow \mathbb{L}^5$ is said to be a generalized helix, if there exist a nonzero unit constant vector X such that $\langle \alpha'(t), X \rangle \neq 0$, is constant. Then $Sp\{X\}$ is called *slope axis* and for the Frenet frame $\{T, N, W_1, W_2, W_3\}$, we have

$$\begin{align*}
\langle W_1, X \rangle &= 0, \\
\langle N, X \rangle &= H_1 \langle T, X \rangle, \\
\langle W_i, X \rangle &= H_i \langle T, X \rangle, \quad 2 \leq i \leq 5.
\end{align*}$$

(4)

Now, the Equation (1) can be given in terms of harmonic curvatures as follows.
Theorem 1. Let \(\alpha \) be a null Frenet curve of osculating order 5 in \(\mathbb{L}^5 \). Then

\[
\begin{align*}
\nabla_T T &= k_1 W_1, \\
\nabla_T N &= -k_1 H_1 W_1 + \frac{H'_1}{H_2} W_2, \\
\nabla_T W_1 &= k_1 H_1 T - k_1 N - \frac{H_3 k_5}{H_2} W_2 - \frac{H_2 k_4}{H_3} W_3, \\
\nabla_T W_2 &= -\frac{H'_1}{H_2} T + \frac{H_3 k_5}{H_2} W_1, \\
\nabla_T W_3 &= -\frac{H_2 k_4}{H_3} W_1,
\end{align*}
\]

where \(k_1, k_4, k_5 \) are Frenet curvatures of \(\alpha \); \(H_1, H_2, H_3 \) are harmonic curvatures of \(\alpha \); and \(\nabla \) is the Levi-Civita connection of \(\mathbb{L}^5 \).

Proof. By using Equations (1) and (3), we obtain the proof of the theorem.

Corollary 2. If \(h = 0 \) and \(k_1 = 0 \) in \(\nabla_T T = h T + k_1 W_1 \), then \(\alpha \) is a null geodesics in \(\mathbb{L}^5 \).

Theorem 3. Let \(\alpha : I \to \mathbb{L}^5 \) be a null curve in \(\mathbb{L}^5 \). Then

\[
\begin{align*}
\langle \nabla_T T, W_1 \rangle &= -\frac{k_2}{H_1}, \\
\langle \nabla_T T, W_2 \rangle &= \langle \nabla_T T, W_3 \rangle = \langle \nabla_T N, W_3 \rangle = \langle \nabla_T W_1, W_1 \rangle = 0, \\
\langle \nabla_T W_2, W_2 \rangle &= \langle \nabla_T W_2, W_3 \rangle = \langle \nabla_T W_3, W_2 \rangle = \langle \nabla_T W_3, W_3 \rangle = 0, \\
\langle \nabla_T N, W_1 \rangle &= -k_1 H_1, \\
\langle \nabla_T N, W_2 \rangle &= \frac{H'_1}{H_2}, \\
\langle \nabla_T W_1, W_2 \rangle &= -\frac{H_3 k_5}{H_2}, \\
\langle \nabla_T W_1, W_3 \rangle &= -\frac{H_2 k_4}{H_3}, \\
\langle \nabla_T W_2, W_1 \rangle &= -\langle \nabla_T W_1, W_2 \rangle, \\
\langle \nabla_T W_3, W_1 \rangle &= -\langle \nabla_T W_1, W_3 \rangle,
\end{align*}
\]
where \(T \) and \(N \) are null vectors; \(W_1, W_2, \) and \(W_3 \) are space-like vectors; \(H_1, H_2, \) and \(H_3 \) are harmonic curvatures of \(\alpha; \) \(\nabla \) is the Levi-Civita connection of \(\mathbb{L}^5; \) and \(k_1, k_2, k_4, k_5 \) are Frenet curvatures of \(\alpha. \)

Proof. By using Equations (1), (2), and (3), we obtain the proof of the theorem. \(\square \)

Theorem 4. Let \(\alpha : I \rightarrow \mathbb{L}^5 \) be a null curve in \(\mathbb{L}^5 \) and \(X \) be a nonzero unit constant vector field (time-like or space-like) of \(\mathbb{L}^5. \) Then

\[
\begin{cases}
(i) \quad \langle \nabla_T T, X \rangle = \langle \nabla_T W_1, X \rangle = \langle \nabla_T W_3, X \rangle = 0, \\
(ii) \quad \langle \nabla_T N, X \rangle = H_1^\prime (T, X), \\
(iii) \quad \langle \nabla_T W_2, X \rangle = -\frac{H_1^\prime}{H_2} (T, X),
\end{cases}
\]

where \(H_1 \) and \(H_2 \) are harmonic curvatures of \(\alpha. \)

Proof.

(i) \(\langle \nabla_T T, X \rangle = \langle k_1 W_1, X \rangle = k_1 \langle W_1, X \rangle = 0, \) \((\langle W_1, X \rangle = 0), \)

\[
\langle \nabla_T W_1, X \rangle = \langle (-k_2 T - k_1 N + k_4 W_2 + k_5 W_3), X \rangle \\
= -k_2 \langle T, X \rangle - k_1 \langle N, X \rangle + k_4 \langle W_2, X \rangle + k_5 \langle W_3, X \rangle \\
= -k_2 \langle T, X \rangle - k_1 H_1 (T, X) + k_4 \langle W_2, X \rangle + k_5 \langle W_3, X \rangle \\
= -k_2 \langle T, X \rangle + k_4 H_2 (T, X) + k_5 H_3 (T, X) \\
= (k_4 H_2 - k_4 H_2) \langle T, X \rangle \\
\Rightarrow \langle \nabla_T W_1, X \rangle = 0,
\]

(ii) \(\langle \nabla_T N, X \rangle = \langle (k_2 W_1 + k_3 W_2), X \rangle \\
= k_2 \langle W_1, X \rangle + k_3 \langle W_2, X \rangle \\
= k_3 \langle W_2, X \rangle \)
\[k_3 H_2 \langle T, X \rangle \]
\[\Rightarrow \langle \nabla_T N, X \rangle = H'_1 \langle T, X \rangle. \]

(iii) \[\langle \nabla_T W_2, X \rangle = \langle (-k_3 T - k_4 W_1), X \rangle \]
\[= -k_3 \langle T, X \rangle - k_4 \langle W_1, X \rangle \]
\[= -k_3 \langle T, X \rangle \]
\[\Rightarrow \langle \nabla_T W_2, X \rangle = -\frac{H'_1}{H_2} \langle T, X \rangle. \]

Corollary 5 [8]. \(\alpha \) is a null helix in \(\mathbb{L}^5 \) \(\iff \) \(2H_1 + (H_2)^2 + (H_3)^2 = \) constant.

Definition 7. A null curve \(\alpha : I \rightarrow \mathbb{L}^5 \) is said to be a generalized helix, if there exist harmonic curvatures \(H_1, H_2, \) and \(H_3 \) such that
\[H'_1 + H'_2 + H'_3 = 0. \]

Corollary 6. \(H'_2 = -\frac{H'_1}{H_2} \) and \(H'_3 = 0. \)

Proof. From [8],
\[\langle W_i, X \rangle = H_i \langle T, X \rangle, \quad 2 \leq i \leq 5. \]

Thus
\[H'_2 = \frac{\langle \nabla_T W_2, X \rangle}{\langle T, X \rangle} = -\frac{H'_1}{H_2} \frac{\langle T, X \rangle}{\langle T, X \rangle} = -\frac{H'_1}{H_2}, \]
and
\[H'_3 = \frac{\langle \nabla_T W_3, X \rangle}{\langle T, X \rangle} = 0. \]
4. Examples

Example 1. Let \(\alpha : I \to \mathbb{L}^5 \) be the null curve defined by

\[
\alpha(t) = (\sinh t, \cosh t, 1, 0, -t), \quad t \in \mathbb{R},
\]

and \(X = (0, 0, 0, 1) \) a unit constant vector field in \(\mathbb{L}^5 \). The tangent vector of \(\alpha \) is

\[
T = \alpha'(t) = (\cosh t, \sinh t, 0, 0, -1),
\]

and \(\langle T, T \rangle = 0 \), so \(\alpha \) is a null curve in \(\mathbb{L}^5 \). Also, \(\langle T, X \rangle = -1 = \text{constant} \). Therefore, the curve \(\alpha \) is a null helix.

Example 2. Let \(\alpha : I \to \mathbb{L}^5 \) be the null curve defined by

\[
\alpha(t) = (t, 0, \sin t, \cos t, 1), \quad t \in \mathbb{R},
\]

and \(X = (1, 0, 0, 0, 0) \) a unit constant vector field in \(\mathbb{L}^5 \). The tangent vector of \(\alpha \) is

\[
T = \alpha'(t) = (1, 0, \cos t, -\sin t, 0),
\]

and \(\langle T, T \rangle = 0 \), so \(\alpha \) is a null curve in \(\mathbb{L}^5 \). Also, \(\langle T, X \rangle = -1 = \text{constant} \). Therefore, the curve \(\alpha \) is a null helix. Moreover, the frame \(\{T, N, W_1, W_2, W_3\} \) is a distinguished Frenet frame along \(\alpha \), where from (2),

\[
N = \frac{1}{2} (-1, 0, \cos t, -\sin t, 0),
\]

\[
W_1 = (0, 0, \sin t, \cos t, 0),
\]

\[
W_2 = (0, 1, 0, 0, 0),
\]

\[
W_3 = (0, 0, 0, 0, 1).
\]
Thus, from (4), we can find the following results:

\[H_1 = -\frac{1}{2}, \quad H_2 = H_3 = 0. \]

Example 3. Let

\[\alpha(t) = \left(\sqrt{3} \sinh t, \sqrt{3} \cosh t, t, \cos t, \sin t \right), \quad t \in R, \]

\[V_1 = \alpha'(t) = \left(\sqrt{3} \cosh t, \sqrt{3} \sinh t, 1, -\sin t, \cos t \right), \]

where \(\langle \alpha'(t), \alpha'(t) \rangle = -1 \), which shows \(\alpha(s) \) is time-like curve and \(X = (1, 0, 0, 0) \) a unit constant vector field in \(\mathbb{L}^5 \). Then,

\[\langle V_1, X \rangle = -\sqrt{3} \cosh t = \text{constant}. \]

Thus \(\alpha(t) \) is a general helix in \(\mathbb{L}^5 \).

Example 4. Let \(\alpha : I \rightarrow \mathbb{L}^5 \) be the null curve defined by

\[\alpha(t) = \frac{1}{\sqrt{2}} (\sinh t, \cosh t, 0, \cos t, \sin t), \quad t \in R. \]

The tangent vector of \(\alpha \) is

\[T = \alpha'(t) = \frac{1}{\sqrt{2}} (\cosh t, \sinh t, 0, -\sin t, \cos t), \]

and \(\langle T, T \rangle = 0 \), so \(\alpha \) is a null curve in \(\mathbb{L}^5 \). Moreover,

\[\nabla_T T = \frac{1}{\sqrt{2}} (\sinh t, \cosh t, 0, -\cos t, -\sin t), \]

and

\[\langle \nabla_T T, \nabla_T T \rangle = 1 > 0, \]

\(\nabla_T T \) is a space-like vector field, so we can take \(\nabla_T T = W_1 \), which implies that \(h = 0 \) and \(k_1 = 1 \) in the first equation of (1). Thus, \(h = 0 \) implies that \(t \) is the distinguished parameter for \(\alpha \) and by Corollary 2, \(\alpha \) is a non-null geodesic in \(\mathbb{L}^5 \). By taking the derivative of \(W_1 \) with respect to \(T \), we have
\[\nabla_T W_1 = \frac{1}{\sqrt{2}} (\cosh t, \sinh t, 0, \sin t, -\cos t). \]

Choosing
\[W_2 = \frac{1}{\sqrt{2}} (\sinh t, \cosh t, 0, \cos t, \sin t), \]
and taking the derivative with respect to \(T \), we have
\[\nabla_T W_2 = \frac{1}{\sqrt{2}} (\cosh t, \sinh t, 0, -\sin t, \cos t) = T. \]

This implies that \(k_3 = -1, k_4 = 0 \) from \(\nabla_T W_2 = -k_3 T - k_4 W_1 \) and we obtain
\[N = \frac{1}{\sqrt{2}} (-\cosh t, -\sinh t, 0, -\sin t, \cos t). \]

By taking the derivative of \(N \) with respect to \(T \), we have
\[\nabla_T N = \frac{1}{\sqrt{2}} (-\sinh t, -\cosh t, 0, -\cos t, -\sin t) = -W_2. \]

This implies that \(k_2 = 0 \) in the second equation of (1). Choosing
\[W_3 = \frac{1}{\sqrt{2}} (-\cosh t, -\sinh t, 0, \sin t, -\cos t), \]
and taking the derivative with respect to \(T \), we have
\[\nabla_T W_3 = \frac{1}{\sqrt{2}} (-\sinh t, -\cosh t, 0, \cos t, \sin t) = -W_1. \]

This implies that \(k_5 = 1 \) in the fourth equation of (1). Thus, the harmonic curvatures of \(\alpha \) are
\[H_1 = H_2 = H_3 = 0. \]
References

