GENERALIZED VECTOR IMPLICIT VARIATIONAL INEQUALITY PROBLEM WITH APPLICATION TO BEST APPROXIMATION

ZORAN D. MITROVIĆ and NENAD U. STOJANOVIĆ
Faculties of Electrical Engineering
University of Banja Luka
78000 Banja Luka, Patre 5
Bosnia and Herzegovina
e-mail: zmitrovic@etfbl.net

Faculty of Applied Economics
University of Business Studies Banja Luka
78000 Banja Luka, J. Dućića 23A
Bosnia and Herzegovina

Abstract

We apply the KKM technique to study generalized vector implicit variational inequality problem. Our results generalize the works of Huang and Li [8], Li and Huang [11], and represent variant of result of Lee and Farajzadeh [10]. We also obtain a version of best approximations theorem in cone metric spaces.

1. Introduction and Preliminaries

The theory of variational inequalities is a very effective technique for studying a wide class of problems arising in different branches of pure and applied sciences (see Allen [2], Aubin and Ekeland [3], Gianessi [7], Baiocchi and Capelo [4], Blum and Oettli [5], Yuan [15], etc.).

2010 Mathematics Subject Classification: 90C33, 49J40.

Keywords and phrases: vector implicit variational inequality problem, KKM mapping, convex cone, best approximation.

Received September 14, 2010

© 2010 Scientific Advances Publishers
In recent years, variational inequalities have been generalized in various directions (see, for example, Agarwal and Verma [1], Noor [13], Wong et al. [14], Lin [12], etc.). In this paper, we introduced the following generalized vector equilibrium (GVEP) problem: Finding \(x_0 \in K \), such that

\[
G(x_0, s(y)) - G(x_0, g(x_0)) \in C(x_0), \text{ for all } y \in K, \quad (1.1)
\]

where \(G : K \times K \to Y \), \(g : K \to K \) are mappings, and \(C : K \to 2^Y \) is a multi-valued mapping with nonempty pointed convex cone values, \(X \) and \(Y \) are topological vector spaces, and \(K \) is a nonempty convex subset of \(X \).

(1) Let \(Y \) be an ordered Banach space induced by a pointed closed convex cone \(P \), \(L(X, Y) \) be the space of all continuous linear mappings from \(X \) into \(Y \), and \(\langle t, x \rangle \) be the value of the linear continuous mapping \(t \in L(X, Y) \) at \(x \), \(f : K \to L(X, Y) \), \(g : K \to K \), \(F : K \to Y \), \(s(x) = x \), \(C(x) = P \) for each \(x \in K \), and

\[
G(x, y) = \langle f(x), y \rangle + F(y), \text{ for all } x, y \in K,
\]

then problem (1.1) reduces to vector \(F \)-implicit variational inequality problem: Finding \(x_0 \in K \), such that

\[
\langle f(x_0), y - g(x_0) + F(y) - F(g(x_0)) \rangle \geq 0, \text{ for all } y \in K, \quad (1.2)
\]

which was introduced by Li and Huang [11].

(2) Let \(X \) be a real Banach space with dual \(X^\ast \) and \(K \) be a nonempty closed convex. Let \(f : K \to X^\ast \), \(g : K \to K \), and \(F : K \to \mathbb{R} \) be a function. If \(s(x) = x \), \(C(x) = [0, +\infty) \) for each \(x \in K \), and

\[
G(x, y) = \langle f(x), y \rangle + F(y), \text{ for all } x, y \in K,
\]

then (1.1) reduces to the \(F \)-implicit variational inequality problem: Finding \(x_0 \in K \), such that
\[\langle f(x_0), y - g(x_0) \rangle \geq F(g(x_0)) - F(y), \text{ for all } y \in K, \quad (1.3) \]

which has been studied by Huang and Li [8].

The aim of this paper is to obtain the results of existence a solution of GVEP problem (1.1) by using the KKM technique.

Theorem 1.1 [6]. Let \(Y \) be a convex set in a topological vector space \(X \) and \(K \) be a nonempty subset of \(Y \). Let \(G : K \to 2^Y \) be a KKM mapping with relatively closed values. If there is a nonempty subset \(K_0 \) of \(K \) such that the \(\bigcap_{x \in K_0} G(x) \) is compact and \(K_0 \) is contained in a compact convex subset of \(Y \), then \(\bigcap_{x \in K} G(x) \neq \emptyset \).

Remark 1.1. Let \(X \) be a topological vector space and \(K \) be a nonempty subset of \(X \). A mapping \(G : K \to 2^X \) is called a KKM mapping, if

\[
\text{co} \{x_1, \ldots, x_n\} \subseteq \bigcup_{i=1}^{n} G(x_i),
\]

for each finite subset \(\{x_1, \ldots, x_n\} \) of \(K \).

2. Main Result

Theorem 2.1. Let \(X \) and \(Y \) be topological vector spaces and \(K \) be a nonempty convex subset of \(X \). Let \(F : K \times K \to Y \), \(g, s : K \to K \) be mappings, and \(C : K \to 2^Y \) be a multi-valued mapping with nonempty pointed convex cone values. Assume that:

1. the set \(\{x \in K : F(x, s(y)) - F(x, g(x)) \in C(x)\} \) is relatively closed in \(K \), for all \(y \in K \);

2. there exists a mapping \(H : K \times K \to Y \) such that

 (a) \(x \notin \text{co} \{y \in K : H(x, y) \notin C(x)\} \), for all \(x \in K \);

 (b) \(F(x, s(y)) - F(x, g(x)) - H(x, y) \in C(x) \), for all \(x, y \in K \);
(3) there exist a nonempty compact subset B and a nonempty convex compact subset D of K such that, for each $x \in K \setminus B$, there exists $y \in D$ such that

$$F(x, s(y)) - F(x, g(x)) \in C(x),$$

then there exists $x_0 \in K$ such that

$$F(x_0, s(y)) - F(x_0, g(x_0)) \in C(x_0), \text{ for all } y \in K.$$

Proof. We define $G_1, G_2 : K \to 2^K$ by

$$G_1(y) = \{ x \in K : H(x, y) \in C(x) \},$$

$$G_2(y) = \{ x \in K : F(x, s(y)) - F(x, g(x)) \in C(x) \}.$$

From condition (a) of (2), we obtain $x \notin \{ y \in K : H(x, y) \notin C(x) \}$, so $H(x, x) \in C(x)$ and $G_1(y)$ is nonempty set for all $y \in K$.

From condition (1), we have that $G_2(y)$ is relatively closed for all $y \in K$.

We prove that G_1 is KKM mapping. Suppose that there exists a finite subset $\{y_1, \ldots, y_n\}$ of K and $\lambda_i \geq 0$, $i = 1, \ldots, n$ with $\sum_{i=1}^{n} \lambda_i = 1$ such that

$$y_0 = \sum_{i=1}^{n} \lambda_i y_i \notin \bigcup_{i=1}^{n} G_1(y_i).$$

Then

$$H(y_0, y_i) \notin C(y_0), i = 1, \ldots, n,$$

and

$$y_i \in \{ y \in K : H(y_0, y) \notin C(y_0), i = 1, \ldots, n.\}$$

So,

$$y_0 \in \text{co} \{ y \in K : H(y_0, y) \notin C(y_0) \},$$
which is a contradiction to assumption (a) of (2). Hence G_1 is a KKM mapping. From condition (b) of (2), we have $G_1(y) \subseteq G_2(y)$ for all $y \in K$. This implies that G_2 is a KKM mapping.

From condition (3), we obtain $\bigcap_{y \in D} G_2(y) \subseteq B$. Therefore, G_2 satisfy the conditions of Theorem 1.1, so,

$$\bigcap_{y \in K} G_2(y) \neq \emptyset.$$

Let $x_0 \in \bigcap_{y \in K} G_2(y)$, then we have

$$F(x_0, s(y)) - F(x_0, g(x_0)) \in C(x_0), \text{ for all } y \in K.$$

\[\square\]

Remark 2.1. (1) Observe that condition (a) of (2) is automatically fulfilled, if $H(x, x) \in C(x)$ and the set $\{y \in K : H(x, y) \notin C(x)\}$ is convex for all $x \in K$.

(2) Let X be a real Banach space with dual space X^*, K be a nonempty closed convex cone of X. Let $f : K \to X^*$, $g : K \to K$, $h : K \times K \to \mathbb{R}$, and $F : K \to \mathbb{R}$ be a function. If we put

$$F(x, y) = \langle f(x), y - g(x) + F(g(x)) - F(y) \rangle,$$

$s(x) = x$ and $C(x) = [0, +\infty)$ for each $x \in K$, Theorem 2.1 reduces to result of Huang and Li [8] (Theorem 3.2).

(3) Note that, if in Theorem 2.1, Y is an ordered Banach space induced by a pointed closed convex cone,

$$F(x, y) = \langle f(x), y - g(x) + F(g(x)) - F(y) \rangle,$$

$s(x) = x$ and $C(x) = P$ for each $x \in K$, we obtain the result of Li and Huang [11] (Theorem 3.2).
(4) Observe that, by Theorem 2.1, we can obtain the result of Lee and Farajzadeh [10] (Theorem 2.2) and Fan [6] (Theorem 6). Also, from Theorem 2.1, we obtain the result of Allen [2].

3. Applications to Best Approximations in Cone Metric Space

In this section, from Theorem 2.1, we obtain the best approximation theorem in cone metric spaces.

Let E be a vector space and P is pointed closed convex cone in E. We define partial ordering \leq with respect to P by $x \leq y$, if and only if $y - x \notin P$, write $x \not\leq y$.

Definition 3.1 [9]. Let X be a nonempty set. Suppose the mapping $d : X \times X \to E$ satisfies:

(d$_1$) $0 < d(x, y)$, for all $x, y \in X$ and $d(x, y) = 0$, if and only if $x = y$;

(d$_2$) $d(x, y) = d(y, x)$, for all $x, y \in X$;

(d$_3$) $d(x, y) \leq d(x, z) + d(y, z)$, for all $x, y, z \in X$.

Then d is called a cone metric on X, and (X, d) is called a cone metric space.

Example 3.1 [9]. Let $E = \mathbb{R}^2$, $P = \{(x, y) \in E : x, y \geq 0\} \subset \mathbb{R}^2$, $X = \mathbb{R}$, and $d : X \times X \to E$ such that

$$d(x, y) = (|x - y|, \alpha|x - y|),$$

where $\alpha \geq 0$ is a constant. Then (X, d) is a cone metric space.

Theorem 3.1. Let (Y, d) be cone metric space and K be a nonempty convex subset of Y. Let $f : K \to Y$, $g, s : K \to K$ be mappings. Assume that:

1. the set $\{x \in K : d(f(x), g(x)) \leq d(f(x), s(y))\}$ is relatively closed in K, for all $y \in K$;

2. $x \notin \text{co}\{y \in K : d(f(x), g(x)) \leq d(f(x), s(y))\}$, for all $x \in K$.
(3) there exist a nonempty compact subset B and a nonempty convex compact subset D of K such that, for each $x \in K \setminus B$, there exists $y \in D$ such that

$$d(f(x), g(x)) \preceq d(f(x), s(y)),$$

then there exists $x_0 \in K$ such that

$$d(f(x_0), g(x_0)) \preceq d(f(x_0), s(y)), \text{ for all } y \in K.$$

In particular, if $f(K) \subseteq s(K)$, then $f(x_0) = g(x_0)$.

Proof. Put

$$F(x, y) = d(f(x), y), \text{ for } x, y \in K,$$

$$H(x, y) = d(f(x), s(y)) - d(f(x), g(x)), \text{ for all } x, y \in K,$$

and $C(x) = P$ for each $x \in K$. Then F and H satisfy all of the requirements of Theorem 2.1. Therefore, there exists $x_0 \in K$ such that

$$F(x_0, g(x_0)) \preceq F(x_0, s(y)), \text{ for all } y \in K,$$

i.e.,

$$d(f(x_0), g(x_0)) \preceq d(f(x_0), s(y)), \text{ for all } y \in K.$$

\square

References

