
Journal of Statistics: Advances in Theory and Applications 

Volume 29, Number 1, 2024, Pages 1-11 
Available at http://scientificadvances.co.in 

DOI: http://dx.doi.org/10.18642/jsata_7100122307  

2020 Mathematics Subject Classification: 62F15, 62G05. 

Keywords and phrases: Dirichlet distribution, multinomial distribution, Bayesian. 

Received August 13, 2024 

 2024 Scientific Advances Publishers 

This work is licensed under the Creative Commons Attribution International License            

(CC BY 3.0). 

http://creativecommons.org/licenses/by/3.0/deed.en_US 

Open Access 
 

 

ESTIMATION OF SPARSE MULTINOMIAL CELL 

PROBABILITIES: A REVIEW  

LAHIRU WICKRAMASINGHE  

Department of Mathematics and Statistics 

University of Winnipeg 

Winnipeg 

Canada  

e-mail: l.wickramasinghe@uwinnipeg.ca  

Abstract 

Sparse data, particularly in the form of sampling zeros or categories 
with very low counts, pose significant challenges to traditional 

estimation methods, often leading to biased parameter estimates, 
reduced statistical power, and unreliable conclusions. The pervasive 
nature of sparse multinomial data across various disciplines, including 

genetics, ecology, and the social sciences, underscores the urgent need 
for improved analytical techniques. This review paper highlights the 
critical importance of developing methods that can more accurately and 

robustly handle sparse data. By effectively managing zeros and low 
counts, these advanced techniques offer a more accurate representation 
of underlying distributions, thereby enhancing the validity of statistical 

inferences. Such improvements are crucial for informed decision-
making and sound policy formulation across multiple fields of study. 
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1. Introduction 

Categorical data is a type of data that consists of categories or groups 

(see Agresti [2]). Each observation in the data belongs to one of the 

categories. There are two types of categorical data: nominal and ordinal. 

Nominal data consists of categories that do not have a specific order or 

rank. Examples of nominal data include gender, race, and country of 

origin. Ordinal data consists of categories that have a specific order or 

rank. Examples of ordinal data include educational level (e.g., high 

school, college, graduate school) and income level (e.g., low, medium, 

high). In addition to these two main types, there are other types of 

categorical data, such as dichotomous and count data. Dichotomous data 

is a type of categorical data that has only two categories (see Hosmer Jr 

et al. [18]); on the other hand, count data is a type of categorical data 

where the categories represent counts of events or occurrences (see 

Cameron and Trivedi [9] and Hilbe [16]). 

Count data often follows certain distributions that are appropriate for 

modelling purposes. The Poisson distribution is often used to model when 

we have data with a small range of possible counts, and when the average 

number of counts is equal to the variance (see Kleiber and Zeileis [21]). 

Another distribution that’s used for count data is called the negative 

binomial distribution, which is used when the counts have a larger range 

of possible values than a Poisson distribution and when the variance is 

greater than the mean (see Long [25]). Hilbe [17] provided an overview of 

when to use Poisson and negative binomial distributions. Binomial and 

multinomial are another two distributions that can be used for count 

data, but rather represent categorical data where each observation falls 

into one of several distinct categories. The binomial distribution is used to 

model the number of successes in a fixed number of independent trials, 

where each trial has only two possible outcomes (success or failure). This 

is a discrete probability distribution that has been extensively covered by 

Ross [28] and Walpole et al. [34]. On the other hand, the multinomial 
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distribution is used to model the probability of outcomes in a situation 

where there are more than two possible outcomes, and each outcome has 

a specific probability. This is a generalization of the binomial distribution 

and is also a discrete probability distribution. The multinomial 

distribution has been extensively covered by Johnson and Kotz [20] and 

Bishop [5]. The Likert scale was introduced by Likert [23]. The data 

collected using the Likert scale is a type of ordinal data that is commonly 

used in surveys and questionnaires to measure attitudes, opinions, and 

perceptions of individuals toward a particular topic or issue (see Carifio 

and Perla [10]). 

There are several common issues that can arise when working with 

categorical data. Imbalanced categories occur when one or more 

categories have a much larger number of observations than others, which 

can also lead to biased statistical inference. To address imbalanced 

categories, Huang et al. [19] proposed techniques such as oversampling, 

undersampling, and weighting can be employed. Missing data, on the 

other hand, occur when some observations have incomplete information 

on the categorical variable of interest, which can reduce the sample size 

and affect statistical power. Various methods have been developed for 

handling missing data in categorical variables, such as multiple 

imputations, maximum likelihood estimation, and Bayesian methods (see 

Rubin [29] and Little and Rubin [24]). Another potential issue with 

categorical data is that it may be prone to measurement error, meaning 

that the categories used may not accurately reflect the underlying 

construct being measured. Carroll et al. [11] provided an in-depth 

analysis of the sources and consequences of measurement error and 

misclassification, and discusses various methods for dealing with these 

issues in statistical analysis. These issues can be addressed through 

careful data cleaning and preparation and using appropriate statistical 

analysis techniques. 
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2. Sparsity 

This paper focuses on another issue that occurs with multinomial 

data called sparsity. Sparsity in multinomial data occurs when a dataset 

contains many variables or categories, resulting in a high number of 

possible outcomes but relatively few observations for each category. This 

situation is particularly common in scenarios with numerous 

classification variables or variables with many levels. As a result, many 

categories may have zero or very few observations, making statistical 

analysis challenging. There are two types of sparsity in multinomial data: 

(1) When outcomes are not observed for one or more categories 

because these outcomes are unobservable (cell probabilities are zero). 

(2) When outcomes are not observed for one or more categories due to 

the limited size of the sample and cell probabilities being small, but not 

actually zero. 

The first type of sparsity is commonly known as structural zeros, 

which refers to outcomes that will always have a count of zero, regardless 

of the sample size .in  If some or all structural zeros are known 

beforehand, they can be excluded from the model or assigned no 

probability mass. Additionally, some research has focused on identifying 

structural zeros, as discussed by Bishop et al. [6]. Xie et al. [39] proposed 

a Bayesian hierarchical model to identify structural zeros and impute 

dropouts in single-cell Hi-C data, which can be adapted to address similar 

challenges in multinomial data. Feng [13] provided a comparison of zero-

inflated models and hurdle models that are frequently employed to 

handle excess zeros in count data, including structural zeros.  

This paper’s primary focus is on the second type of sparsity, 

exemplified by instances of sampling zeros (as well as extremely low 

observed counts). This issue can significantly hinder statistical inference. 

To mitigate this, augmenting the effective cell counts by integrating 

various data sources can be beneficial. Under standard conditions, the 
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Maximum Likelihood Estimator (MLE) for ijp  is known for its 

consistency and efficiency. Consistency implies that as the sample size 

increases, the estimates converge in probability to the true cell 

probabilities. Efficiency signifies that no other consistent estimator has a 

lower mean squared error (MSE) than MLEˆ ijp  as the sample size grows. 

However, the MLE can perform poorly by underestimating the true cell 

probabilities when dealing with sparse data (see Molenberghs and 

Verbeke [27]). For sparse multinomial datasets, the MLE often results in 

zero probability estimates that are difficult to interpret, and fail to meet 

the sparse asymptotic consistency criterion in certain scenarios, i.e., 
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(see Lambert [22]; Min and Agresti [26]). This inconsistency underscores 

the need for alternative estimation techniques that can handle sparsity 

more effectively. 

3. Handling Sampling Zeros 

The second type of sparsity, characterized by sampling zeros and very 

low observed counts, presents significant challenges in statistical analysis 

and inference. Very low observed counts contribute to instability in 

estimates and increase the variance of the estimators. This sparsity type 

is difficult to handle because it often leads to biased parameter estimates 

and increased uncertainty. This can result in misleading conclusions 

about the underlying population parameters. To address these 

challenges, I outline several approaches that effectively address the 

second type of sparsity. 

The first approach involves an estimator, which is obtained by 

combining MLEˆ ijp  with an informed guess for .ijp  This method can 

provide improved performance over MLEˆ ijp  (see Fienberg and Holland 
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[14]). Different techniques to construct this informed guess lead to so-

called shrinkage estimators, which borrow information across other 

multinomial populations and cell categories. The resulting estimator can 

have significantly improved performance in some contexts. Different 

methods for borrowing information from other available data can enhance 

the estimation of .ijp  One initial approach, particularly applicable to 

ordinal categories, involves borrowing information from adjacent cells 

within the same multinomial population to improve the estimation of cell 

probabilities. This method is also extensively used to gather information 

from neighbouring cells in a sparse contingency table. Various 

methodologies have been developed to leverage information from 

neighbouring cells. Simonoff [31] considered an estimator based on a 

maximum penalized likelihood criterion for sparse multinomial data. 

Burman [8], and Hall and Titterington [15] proposed kernel-type 

estimators for sparse multinomial data, both of which are sparsity 

asymptotic consistent under certain restrictive conditions on the true cell 

probabilities. Dong and Simonoff [12] used boundary kernels to relax 

some of these conditions. Aerts et al. [1] proposed an estimator based on a 

local polynomial approach for sparse contingency tables. Albert [4] 

demonstrated that the Bayesian paradigm offers significant flexibility in 

handling boundary bias and sparsity when analyzing sparse contingency 

tables. In this approach, information is borrowed within a “block,” where 

the structure of these blocks and the data structure significantly affect 

the determination of neighbouring cells. 

Another approach to handle this second type of sparsity by borrowing 

information from other multinomial populations rather than from 

neighbouring cells within the same population to enhance the estimation 

of .ijp  This method identifies other multinomial populations that are 

similar in p to the target population and borrows information from these 

similar populations for each category separately. Ahmed [3] demonstrated 

that shrinkage estimators outperform maximum likelihood estimators for 
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.ijp  This approach is conceptually different from the first one, as it 

focuses on finding methodologies that leverage information from other 

multinomial populations. Wickramasinghe et al. [37] introduced a semi-

parametric Bayesian estimator utilizing the Dirichlet process (DP) 

through the stick-breaking construction, originally proposed by 

Sethuraman [30]. This Dirichlet process method effectively borrows 

information across similar populations by clustering them during the 

MCMC posterior simulation iterations. Additionally, Wickramasinghe et 

al. [35] developed an approach to model batting outcomes in baseball 

using weighted likelihood concepts. This weighted likelihood method for 

estimating multinomial probabilities also facilitates sharing relevant 

information among different batters (populations). Both techniques 

improve the estimation of cell probabilities by borrowing information 

exclusively across other multinomial populations. Importantly, neither 

method enables the sharing of information between cells within the same 

population, which is particularly valuable in the context of ordered 

categories. 

A third method involves integrating the first and second approaches I 

discussed before by borrowing information across both multinomial 

populations and cell categories. This combined approach enhances the 

estimation of multinomial cell probabilities. It is particularly useful when 

the categories are ordinal, meaning they have a natural order. In such 

cases, borrowing information from neighbouring cell categories is 

conceptually sound and beneficial. Wickramasinghe et al. [36] introduced 

a Bayesian estimator, based on a smoothed Dirichlet prior (see 

Wickramasinghe et al. [38]), which acts as a scaled shrinkage estimator. 

This method allows for simultaneous inference across numerous 

multinomial populations by borrowing information between populations 

and cell categories. This introduced estimator can be viewed as a double 

(or two-way) shrinkage estimator that enhances the overall inference for 

sparse multinomial data. 
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4. Future Research Areas 

I outline a few future research areas for handling this second type of 

sparsity. One potential method is using hierarchical Bayesian models. 

Hierarchical Bayesian models offer a robust framework for enhancing the 

estimation of sparse multinomial data by pooling information across 

different levels of a hierarchical structure. Developing new priors that 

balance flexibility and informativeness can help in better capturing the 

underlying structure of sparse data. Priors such as hierarchical Dirichlet 

processes (see Teh et al. [32]) or nonparametric priors can adaptively 

borrow strength across categories while preserving local variation. Also, 

innovations and efficient computational algorithms in scalable inference 

techniques, including variational inference (see Blei et al. [7]) and 

advanced Markov Chain Monte Carlo (MCMC) methods, are crucial for 

handling sparse multinomial data. Using penalized likelihood methods 

for improving the estimation of sparse multinomial data is a promising 

research area. Penalized likelihood methods (see Tibshirani [33]), such as 

those incorporating adaptive penalties, can improve parameter 

estimation by controlling the complexity of the model. Selecting an 

appropriate penalty term is crucial to handle sparsity effectively. 
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