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Abstract 

Reinforcement Learning (RL) has emerged as a widely applicable and effective 
paradigm for addressing decision-making problems across diverse domains. 
RL encapsulates decision-making problems within the framework of Markov 
decision processes (MDPs), with the resolution of the Bellman optimal 
problem (BOP) being the quintessential endeavor. We present a rigorous proof 
of the convergence for the value iteration method of BOP, highlighting its 
exponential rate. Building upon this foundation, we introduce two novel 
acceleration techniques-transition set and multiple step update-that enhance 
the efficiency of Q-Learning and Deep Q-Networks. Our extensive numerical 
experiments confirm the effectiveness of these techniques. 

1. Introduction 

Reinforcement learning (RL) has found widespread applications in 
addressing decision-making problems across various domains, ranging 
from game playing [8, 13], robotics [6, 2], to natural language processing 
[4, 11], finance [5, 12], and autonomous driving [1, 3]. Its ability to learn 
optimal behaviour through interaction with an environment, guided by 
rewards and penalties, has yielded remarkable results. For instance, in 
the realm of robotics, RL techniques have been utilized to train agents for 
tasks such as robot navigation, manipulation, and even autonomous 
vehicle control [15]. In finance, RL algorithms have been deployed for 
portfolio management, algorithmic trading, and risk assessment [10]. 
These successful applications underscore the versatility and effectiveness 
of RL methodologies in solving complex decision-making challenges. 

In the realm of RL, the decision-maker adeptly acquires the 
capability to formulate optimal decisions through continuous interaction 
with the environment. This process is effectively encapsulated within the 
structured confines of Markov decision processes (MDPs), which serves as 
a comprehensive framework for formalizing the interactive dynamics. 
Concurrently, the Bellman optimal problem encapsulates the essence of 
this interactive learning in a precise mathematical construct, offering a 
rigorous foundation for understanding and solving for optimal policies. 
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The Bellman optimal problem is typically solved by using two 
primary methods: value iteration and policy iteration. Value iteration 
method (VIM) updates the value function iteratively until it converges to 
the optimal value function. It uses the Bellman optimality equation to 
update each state’s value based on the values of its successor states. 
Policy iteration is another method that alternates between policy 
evaluation and policy improvement until the optimal policy is found. In 
fact, RL algorithms are often divided into value-based and policy-based, 
essentially depending on whether value iteration or policy iteration is 
used to solve the Bellman optimal problem. 

The landscape of RL is rich with a multitude of algorithms, like         
Q Learning (QL) [17], Deep Q-Network (DQN) [9, 18], Policy gradient 
methods [16, 14], Actor-critic methods [7], and Deep deterministic policy 
gradient (DDPG) [6], each tailored to tackle specific challenges within 
decision-making frameworks. Among these algorithms, VIM stands as a 
cornerstone, serving as the foundation for many value-based RL 
algorithms like QL and DQN. The theoretical analysis of VIM holds 
significant promise for enhancing and refining RL algorithms, offering 
invaluable insights into their convergence properties and optimization 
potential. 

The primary objective of this paper is to provide a clear mathematical 
description of RL, with a specific focus on the VIM algorithm. By 
rigorously proving its convergence and introducing novel acceleration 
techniques, we aim to establish a solid theoretical foundation for VIM 
and contribute to the advancement of RL methodologies. 

This paper is organized as follows: In Section 2, we introduce the 
mathematical model of MDPs and provide an overview of RL. In Section 
3, we present a detailed exposition of Bellman optimal problem and the 
VIM algorithm and offers rigorous proofs of its convergence. In Section 4, 
we propose two acceleration techniques tailored for QL and DQN, 
respectively. In Section 5, we show numerical experiments to validate the 
effectiveness of these acceleration techniques. 
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2. Markov Decision Processes and Reinforcement Learning 

The Markov decision processes (MDPs) is a basic model for 
reinforcement learning to describe a problem of learning from interaction 
to achieve a goal. The learner and decision maker is called the agent. The 
thing it interacts with, comprising everything outside the agent, is called 
the environment. These interact continually, the agent selecting actions 
and the environment responding to these actions and presenting new 
situations to the agent. There are five basic elements in MDPs, including 
the set of states ,S  the set of actions ,A  the immediate reward ,r  the 

state transition function ,p  and the discount factor .γ  

To give a brief and clear analysis, we do not consider the possibility 
distribution during the agent-environment interface and assume that the 
interface is based on a deterministic rule. 

Assumption (A) The sets of states S  and actions A  are finite. 
There are a reward function R→× AS:r  and a state transition 
function .: SAS →×p  And when the agent takes action a in state s, 

the reward ( )asr ,  and the new state ( )asp ,  are deterministic. The 

discount factor ( ).1,0∈γ  

We have to claim that the analysis can also be extended to the 
situation where the reward and state transition is not deterministic and 
modelled by some possibility distribution. 

A deterministic policy π  is a mapping from the set of states S  to the 
set of actions .A  And we denote the space of deterministic policies by 

{ }.:: AS →ππ=∏   (1) 

If the agent takes actions under a policy ∏∈π  and the environment 
starts with a state ,0s  then as the interface goes by, there is a sequence 

,,,,,,,,,,, 111000 ttt rasrasras  
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where 

( ) ( ) ( ) .,,,,, 1 N∈∀==π= + taspsasrrsa tttttttt  (2) 

The return G of this process is the discounted cumulative reward, 
defined by 

.
0

t
t

t
rG γ= ∑

∞

=

 

For simplicity, we denote the sequence with initial state s under policy π  
by ( ) .~,, 010 π= ssss  The discount factor ( )1,0∈γ  and a bounded 

reward function are to endure the convergence of the series. 

The goal of reinforcement learning is to find the optimal policy and 
obtain the return as high as possible. Now we introduce the value of a 
policy and define the optimal policy. The value of a state S∈s  under a 
policy ∏∈π  is defined by 

( )
( )

.
~,,0 010 π=

∞

=
π












γ= ∑

ssss

rsv k
k

k
  (3) 

We call the function πv  the state-value function for policy .π  Then the 

optimal policy is the solution of the problem: Find ∏∈π∗  such that 

( )svπ
∏∈π

∗ =π maxarg  for any .S∈s   (4) 

3. Bellman Optimal Problem and Value Iteration 

In this section, we first present the definition of the action-value 
function and introduce the Bellman optimal problem. Then we bring in 
VIM algorithm and give a rigorous convergence analysis. 
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The value of taking action a in state s under a policy π  is defined by 

( )
( )

.,
~,,,0 0010 π==

∞

=
π












γ= ∑

aassss

rasq k
k

k
 (5) 

We call the πq  the action-value function for policy .π  We denote the 

space of action-value function by 

{ },:: R→×= ASQ qq   (6) 

equipped with the infinity norm 

( ) .,max:
,

asqq
as AS ∈′∈′∞ =   (7) 

We see from (5) and (3) that 

( ) ( )( )ssqsv π= ππ ,  for any ,S∈s   (8) 

and 

( ) ( ) ( )( )aspvasrasq ,,, ππ γ+=  for any ., AS ∈∈ as  (9) 

Substituting (8) into (9) yields the Bellman equation 

( ) ( ) ( ) ( )( )( )aspaspqasrasq ,,,,, πγ+= ππ  for any ., AS ∈∈ as  (10) 

Now we build a mapping between the policy and the action-value 
function. On the one hand, given a ,∏∈π  since the reward function is 
bounded and the discount factor ( ),1,0∈γ  the series (5) is convergent. 

This yields the existence and uniqueness of .πq  On the other hand, given 

a action-value function ,: R→× ASq  we define the greedy policy qπ  by 

( ) ( )asqs
a

q ′=π
∈′

,maxarg
A

 for any .S∈s  (11) 

Considering the Bellman equation of a greedy policy, we introduce 
the Bellman optimality problem: Find Q∈q  such that 

( ) ( ) ( )( )aaspqasrasq
a

′γ+=
∈′

,,max,,
A

 for any ., AS ∈∈ as  (12) 
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The following two lemmas show that the greedy policy of the unique 
solution of the Bellman optimality problem is exactly an optimal policy. 

Lemma 3.1. If Assumption (A) is satisfied and Q∈∗∗ 21 , qq  are both 

the solution of the Bellman optimality problem (12), then ., 21 ∗∗ qq  

Proof. We have from (12) that 

( ) ( ) ( )( ) ( )( ) ,,,max,,max,, 2121 




 ′−′γ=− ∗

∈′
∗

∈′
∗∗ aaspqaaspqasqasq

AaAa
 

., AS ∈∈∀ as  

Assume that max ( )( ) ( )( )aaspqaaspq
AaAa

′>′ ∗
∈′

∗
∈′

,,max,,max 21  and denote 

( )( ).,,maxarg:ˆ 1 aaspqa
Aa

′= ∗
∈′

 Then we have 

( ) ( ) ( )( ) ( )( ) 




 ′−γ=− ∗

∈′
∗∗∗ aaspqaaspqasqasq

Aa
,,maxˆ,,,, 2121  

 ( ( )( ) ( )( )) .,,ˆ,,ˆ,, 21 AS ∈∈∀−γ≤ ∗∗ asaaspqaaspq  

Since as,  is arbitrary, we obtain 

( ) .01 212121 ≤−γ−⇒−γ≤− ∞
∗∗

∞
∗∗

∞
∗∗ qqqqqq  

Since ( ),1,0∈γ  we have .21 ∗∗ = qq  And this finishes the proof.   

Lemma 3.2. If Assumption (A) is satisfied and ∗q  is the unique 

solution of (12), then the greedy policy of ∗q  (defined by (11)), ∗πq  satisfies 

(4). 

Proof. Denote the greedy policy of ∗q  by .∗π  Define the error 

( ) ( ) .,: S∈∀−= π∗π ssvsves  
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We first show the change of the error in the state sequence under 
arbitrary policy. Given ∏∈π  and ,S∈ts  we have from (8), (10), (12) 

and (9) that 

( ) ( ) ( ( ) ( ))tttttts asqasqsvsve t ,, ∗π
∗∗ππ∗π −=−=  

( ( ) ( ))tttt asqasq ,, π∗π −+  

 ( ( ) ( )) ( ) ( )




 −′γ+−= ++π+∗π

∈′
∗π

∗∗π 111,max,, tttAatttt asqasqasqasq  

 ( ( ) ( )) ( ( ) ( )) .,, 111 +
γ≥−γ+−= +π+∗π∗π

∗∗π tstttttt esvsvasqasq   (13) 

Here ( ) ( ) ( )ttttttt aspssasa ,,, 1 =∗π=π= +
∗  and ( ).11 ++ π= tt sa  By 

deduction, we have for any N∈nm,  and nm <  that 

,1 nmm s
mn

ss eee −γ≥≥γ≥
+

 where ( ) .~,, 10 πss  (14) 

For any initial state ,S∈s  the state sequence is ( ) .~,, 010 π= ssss  

Since S  is finite, the sequence must arrive a loop and we assume that 

mn ss =  for some N∈nm,  and .nm <  Using (14) and the fact 

( ),1,0∈γ  we obtain ( ) 01 ≥γ− −
ns

mn e  and thus .0≥nse  Using (14) 

again, we have 

.00 ≥γ≥= ns
n

ss eee  

Recalling the definition ( ) ( ),svsves π∗π −=  we show that 

( ) ( ) ., S∈∈π∀≥ ∏π∗π ssvsv   (15) 

This completes our proof.   

Lemma 3.2 gives an idea to find the optimal policy: solve the Bellman 
optimality problem and get its greedy policy. This is the basic idea for 
many classic value-based reinforcement learning algorithms like QL and 
DQN. QL solves the Bellman optimality problem by iteration while DQN 
by gradient decent. 
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Under Assumption (A), with known reward function r and transition 
function ,p  we can solve the Bellman optimality problem by Richardson 

iteration and this is VIM algorithm. Given a initial action-value function 
Q∈0q  with ,00 ≡q  VIM updates the action-value function by 

( ) ( ) ( )asqasq ,1,1 kk α−=+  

( ) ( )( ) ,,,,,max, AS
A

∈∈∀




 ′γ+α+

∈′
asaaspqasr

a k   (16) 

where ( ]1,0∈α  is the step parameter. 

The following theorem shows that VIM has an exponential 
convergence rate. 

Theorem 3.1 (Convergence). If Assumption (A) is satisfied and ∗q  is 

the solution of the Bellman optimality problem (12), then the action-value 

function sequence { }∞=0kkq  in VIM (16) satisfies 

( ) .1
11 ∞∞

∗
γ−

γα+α−≤− rqq k
k  (17) 

Proof. Define R→× AS:ke  for 1,0=k  with ( ) kk qase =:,  

( ) ( ).,, asqas ∗−  We have from (16) that 

( ) ( ) ( )asease ,1,1 kk α−=+  

( )( ) ( )( )( ).,,max,,max aaspqaaspq
aa

′−′αγ+ ∗
′′ k  

This yields 

( ) ( )asqasqee tta
′−′γα+α−≤ +∗+′∞∞+ ,,max1 111 kkk  

( ) ∞∞∞ γα+α−≤γα+α−≤ kkk eee 11  

( ) .1 0
1

∞
+γα+α−≤ ek   (18) 
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Since ,00 ≡q  using (10) leads to 

.1
1

0 ∞∞
∗

∞
∗

∞∞
∗

∞ γ−
≤⇒γ+≤= rqqrqe  

Combining with (18) gives 

( ) ,1
11 1

1 ∞
+

∞+ γ−
γα+α−≤ re k

k  

and this completes our proof.   

4. Acceleration Techniques 

In this section, we introduce two classic algorithms in reinforcement 
learning: QL [17] and DQN [9]. Then we propose two acceleration 
techniques, transition set and multiple steps update, to speed up the 
algorithms. 

In QL, the Q value is updated once per step and an observation about 
reward and next state is necessary. Then the action value of current 
state-action pair is updated by its Bellman optimality description. In 
every step, a transition ( )1,,, +tttt sras  is collected to update the Q value 

of corresponding pair. However, the update is based on only the current 
interface. Considering taking advantages of the past experiences, we 
propose the transition set technique. Specifically, we create a transition 
set and store all the transitions we obtain. Then in every step, we can not 
only update the Q value of current state-action pair, but also all the pairs 
in the transition set. The accelerated QL algorithm with transition set is 
shown in Algorithm 1. 
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Algorithm 1. Accelerated Q Learning Algorithm 

Initialize ( ) 0, =asq  for all AS ∈∈ as ,  and transition set .T  

Repeat (for each episode): 

Initialize state 0s  

Repeat (for each step of episode, :),,1,0 Tt =  

Choose action ( )asqa tt
a

t ,maxarg
A∈

=  with -greedy strategy 

Take action ,ta  observe 1, +tt sr  and store ( )1,,, +tttt sras  
in transition set T  

Update the Q value by 

( ) ( ) ( ) ( ) ( ) .,,,,,max,1,1 T
A

∈′∀




 ′′γ+α+α−=

∈′+ srasasqrasqasq tatt  

(19) 
___________________________________________________________________ 

We see from Theorem 3.1 that the Q value converges in an 
exponential rate if we update all the state-action pairs in every step. 
Then in our accelerated algorithm, the Q value will converge in an 
exponential rate after the agent finishes exploration. We also expect a 
faster convergence rate even when the transition set is not complete, 
which can be seen in numerical experiments afterwards. 

DQN shares basically the same framework as q leaning. They both 
collect the transition and update Q value function in one step. QL models 
the Q value function with a table while DQN with a neural network. 
Experience replay and target network are two successful skills in DQN. 
Experience replay is to obtain uncorrelated samples, which makes the 
gradient for the stochastic optimization problem more accurate. The goal 
of target network is to cancel the dependence of the bias term in loss 
function on the parameter and then the gradient decent could actually 
lower the loss. The basic DQN updates the parameter along a zigzag 
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path, taking a single step in a particular direction with each update. A 
more effective approach involves taking multiple steps in the same 
direction to enhance convergence, and we call this technique “multiple 
steps update”. Applying the transition set and multiple steps update 
techniques, the accelerated DQN algorithm is shown in Algorithm 2. 

Algorithm 2. Accelerated Deep Q-Network Algorithm 

Initialize the Q-network ( )θ;, asq  and the transition set T  

Repeat (for each episode): 

Initialize state 0s  

Repeat (for each step of episode, ):,,1,0 Tt =  

Choose action ( )θ=
∈

;,maxarg asqa t
a

t
A

 with -greedy strategy 

Take action ta  and observe 1, +tt sr  

Store transition ( )1,,, +tttt sras  in transition set T  

Repeat (for each step of update) 

Compute ( )θ′γ+=
∈

;,max asqry iaii A
 for all elements in 

transition set T  

Update the Q-network by gradient descent 

( )( ) ( )θ∇⋅θ−⋅α−θ←θ θ
≤
∑ ;,;,1

iiiii
ni

t asqasqyn   (20) 

___________________________________________________________________ 

5. Numerical Experiments 

In this section, we provide some numerical experiments to show the 
effect of our acceleration techniques. 
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In every experiment, we execute training using randomly initialized 
Q value over a defined number of episodes. Each episode maintains 
uniform step counts and initial states. Continuous Q value training 
ensures subsequent episodes inherited the final Q values of the previous 
episode. We compare the performance of basic reinforcement learning 
algorithms (QL and DQN) and their accelerated algorithms. At each step, 

we compute the Q value error ∞
∗−= qqe kk :  and the number of known 

state-action pairs ., ksaN  Additionally, return for each episode is 

calculated. 

Example 1. Consider a scenario of a treasure hunt for an adventurer 
on a 1-dimensional map, where the treasure is located at the far right of 
the map. In this example, the adventurer’s position on the map serves as 
the state in MDPs. And the available actions for the adventurer include 
moving left or right. The reward is 1 when the adventurer gets close to 
the treasure and 0 otherwise. 

We train for 50 episodes, with each episode consisting of 30 steps. 
The Q value error, number of known state-action pairs, and returns 
during the training is presented in Figures 1, 2, and 3, respectively. For 
the accelerated QL algorithm, Q value error begins a rapid decline at 
about 150 steps and exponentially decays upon collecting all state-action 
pairs ( ),12, =ksaN  supporting the result in Theorem 3.1. In contrast, for 

the basic QL algorithm, even after experiencing all state-action pairs, the 
Q value error exhibits no noticeable decrease until about 950 steps. 
Furthermore, the accelerated QL algorithm achieves a quicker 
convergence to a stable and high return. 
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Figure 1. Q value error ke  of the basic QL and accelerated QL. 

 

Figure 2. Number of known state-action pairs k,saN  of the basic QL 

and accelerated QL. 
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Figure 3. Returns of the basic QL and accelerated QL. 

Example 2. Consider an agent moves in a gridworld [15]. The cells of 
the grid correspond to the states of the environment. At each cell, four 
actions are possible: north, south, east, and west, which deterministically 
cause off the grid leave its location unchanged, but also result in a 
reward of – 1. Other actions result in a reward of 0, except those that 
move the agent out of the special states A and B. From state A, all four 
actions yield a reward of 10 and take the agent to A’. From state B, all 
actions yields a reward of 5 and take the agent to B’. 

We train for 100 episode, with each episode consisting of 200 steps. 
The Q value error, number of known state-action pairs, and returns 
during the training is presented in Figures 4, 5, and 6, respectively. In 
achieving a stable convergent state for Q value error, the accelerated 
DQN takes approximately 2500 steps, while the basic DQN requires 
nearly 7000 steps. Additionally, concerning return of an episode, the 
accelerated DQN notably reaches a stable high-return state at a faster 
rate. These observations validate the effectiveness of out acceleration 
techniques. 
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Figure 4. Q value error ke  of the basic DQN and accelerated DQN. 

 

Figure 5. Number of known state-action pairs k,saN  of the basic DQN 

and accelerated DQN. 
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Figure 6. Returns of the basic DQN and accelerated DQN. 

6. Conclusion 

In this paper, we have examined the convergence of the value 
iteration method of Bellman optimal problem and demonstrated its 
exponential decay in a deterministic environment. This observation 
provides insights into potential enhancements for RL algorithms that 
rely on VIM, such as Q-Learning and DQN. Drawing upon the concepts 
derived from the convergence analysis, we introduce two acceleration 
techniques: transition set and multiple step update. These techniques are 
incorporated into Q-Learning and DQN to expedite the algorithms, and 
numerical experiments are conducted to showcase the acceleration effect. 
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