
Journal of Mathematical Sciences: Advances and Applications
Volume 76, 2024, Pages 39-57
Available at http://scientificadvances.co.in
DOI: http://dx.doi.org/10.18642/jmsaa_7100122308

2020 Mathematics Subject Classification: 65Dxx.
Keywords and phrases: reinforcement learning, Bellman optimal problem, value iteration,
convergence analysis, acceleration techniques.
*Corresponding author.
Received August 15, 2024

 2024 Scientific Advances Publishers

This work is licensed under the Creative Commons Attribution International License
(CC BY 3.0).
http://creativecommons.org/licenses/by/3.0/deed.en_US

Open Access

CONVERGENCE OF THE VALUE ITERATION
METHOD FOR BELLMAN OPTIMAL PROBLEM

AND APPLICATIONS

XUANYU LIU, SHAO HUANG, MENGQIU FAN, XIN YIN,
YAODONG ZHAO* and LIMING ZHOU

National Key Laboratory of Electromagnetic Space Security
Southwest China Research Institute of Electronic Equipment
Chengdu 610036
P. R. China
e-mail: xyliu_2024@163.com

huangshaolee@163.com
fanmengqiu@cetc.com.cn
yinxin_2015@163.com
zhyd0921@163.com
zhouuestc@163.com

XUANYU LIU et al. 40

Abstract

Reinforcement Learning (RL) has emerged as a widely applicable and effective
paradigm for addressing decision-making problems across diverse domains.
RL encapsulates decision-making problems within the framework of Markov
decision processes (MDPs), with the resolution of the Bellman optimal
problem (BOP) being the quintessential endeavor. We present a rigorous proof
of the convergence for the value iteration method of BOP, highlighting its
exponential rate. Building upon this foundation, we introduce two novel
acceleration techniques-transition set and multiple step update-that enhance
the efficiency of Q-Learning and Deep Q-Networks. Our extensive numerical
experiments confirm the effectiveness of these techniques.

1. Introduction

Reinforcement learning (RL) has found widespread applications in
addressing decision-making problems across various domains, ranging
from game playing [8, 13], robotics [6, 2], to natural language processing
[4, 11], finance [5, 12], and autonomous driving [1, 3]. Its ability to learn
optimal behaviour through interaction with an environment, guided by
rewards and penalties, has yielded remarkable results. For instance, in
the realm of robotics, RL techniques have been utilized to train agents for
tasks such as robot navigation, manipulation, and even autonomous
vehicle control [15]. In finance, RL algorithms have been deployed for
portfolio management, algorithmic trading, and risk assessment [10].
These successful applications underscore the versatility and effectiveness
of RL methodologies in solving complex decision-making challenges.

In the realm of RL, the decision-maker adeptly acquires the
capability to formulate optimal decisions through continuous interaction
with the environment. This process is effectively encapsulated within the
structured confines of Markov decision processes (MDPs), which serves as
a comprehensive framework for formalizing the interactive dynamics.
Concurrently, the Bellman optimal problem encapsulates the essence of
this interactive learning in a precise mathematical construct, offering a
rigorous foundation for understanding and solving for optimal policies.

CONVERGENCE OF THE VALUE ITERATION METHOD FOR … 41

The Bellman optimal problem is typically solved by using two
primary methods: value iteration and policy iteration. Value iteration
method (VIM) updates the value function iteratively until it converges to
the optimal value function. It uses the Bellman optimality equation to
update each state’s value based on the values of its successor states.
Policy iteration is another method that alternates between policy
evaluation and policy improvement until the optimal policy is found. In
fact, RL algorithms are often divided into value-based and policy-based,
essentially depending on whether value iteration or policy iteration is
used to solve the Bellman optimal problem.

The landscape of RL is rich with a multitude of algorithms, like
Q Learning (QL) [17], Deep Q-Network (DQN) [9, 18], Policy gradient
methods [16, 14], Actor-critic methods [7], and Deep deterministic policy
gradient (DDPG) [6], each tailored to tackle specific challenges within
decision-making frameworks. Among these algorithms, VIM stands as a
cornerstone, serving as the foundation for many value-based RL
algorithms like QL and DQN. The theoretical analysis of VIM holds
significant promise for enhancing and refining RL algorithms, offering
invaluable insights into their convergence properties and optimization
potential.

The primary objective of this paper is to provide a clear mathematical
description of RL, with a specific focus on the VIM algorithm. By
rigorously proving its convergence and introducing novel acceleration
techniques, we aim to establish a solid theoretical foundation for VIM
and contribute to the advancement of RL methodologies.

This paper is organized as follows: In Section 2, we introduce the
mathematical model of MDPs and provide an overview of RL. In Section
3, we present a detailed exposition of Bellman optimal problem and the
VIM algorithm and offers rigorous proofs of its convergence. In Section 4,
we propose two acceleration techniques tailored for QL and DQN,
respectively. In Section 5, we show numerical experiments to validate the
effectiveness of these acceleration techniques.

XUANYU LIU et al. 42

2. Markov Decision Processes and Reinforcement Learning

The Markov decision processes (MDPs) is a basic model for
reinforcement learning to describe a problem of learning from interaction
to achieve a goal. The learner and decision maker is called the agent. The
thing it interacts with, comprising everything outside the agent, is called
the environment. These interact continually, the agent selecting actions
and the environment responding to these actions and presenting new
situations to the agent. There are five basic elements in MDPs, including
the set of states ,S the set of actions ,A the immediate reward ,r the

state transition function ,p and the discount factor .γ

To give a brief and clear analysis, we do not consider the possibility
distribution during the agent-environment interface and assume that the
interface is based on a deterministic rule.

Assumption (A) The sets of states S and actions A are finite.
There are a reward function R→× AS:r and a state transition
function .: SAS →×p And when the agent takes action a in state s,

the reward ()asr , and the new state ()asp , are deterministic. The

discount factor ().1,0∈γ

We have to claim that the analysis can also be extended to the
situation where the reward and state transition is not deterministic and
modelled by some possibility distribution.

A deterministic policy π is a mapping from the set of states S to the
set of actions .A And we denote the space of deterministic policies by

{ }.:: AS →ππ=∏ (1)

If the agent takes actions under a policy ∏∈π and the environment
starts with a state ,0s then as the interface goes by, there is a sequence

,,,,,,,,,,, 111000 ttt rasrasras

CONVERGENCE OF THE VALUE ITERATION METHOD FOR … 43

where

() () () .,,,,, 1 N∈∀==π= + taspsasrrsa tttttttt (2)

The return G of this process is the discounted cumulative reward,
defined by

.
0

t
t

t
rG γ= ∑

∞

=

For simplicity, we denote the sequence with initial state s under policy π
by () .~,, 010 π= ssss The discount factor ()1,0∈γ and a bounded

reward function are to endure the convergence of the series.

The goal of reinforcement learning is to find the optimal policy and
obtain the return as high as possible. Now we introduce the value of a
policy and define the optimal policy. The value of a state S∈s under a
policy ∏∈π is defined by

()
()

.
~,,0 010 π=

∞

=
π












γ= ∑

ssss

rsv k
k

k
 (3)

We call the function πv the state-value function for policy .π Then the

optimal policy is the solution of the problem: Find ∏∈π∗ such that

()svπ
∏∈π

∗ =π maxarg for any .S∈s (4)

3. Bellman Optimal Problem and Value Iteration

In this section, we first present the definition of the action-value
function and introduce the Bellman optimal problem. Then we bring in
VIM algorithm and give a rigorous convergence analysis.

XUANYU LIU et al. 44

The value of taking action a in state s under a policy π is defined by

()
()

.,
~,,,0 0010 π==

∞

=
π












γ= ∑

aassss

rasq k
k

k
 (5)

We call the πq the action-value function for policy .π We denote the

space of action-value function by

{ },:: R→×= ASQ qq (6)

equipped with the infinity norm

() .,max:
,

asqq
as AS ∈′∈′∞ = (7)

We see from (5) and (3) that

() ()()ssqsv π= ππ , for any ,S∈s (8)

and

() () ()()aspvasrasq ,,, ππ γ+= for any ., AS ∈∈ as (9)

Substituting (8) into (9) yields the Bellman equation

() () () ()()()aspaspqasrasq ,,,,, πγ+= ππ for any ., AS ∈∈ as (10)

Now we build a mapping between the policy and the action-value
function. On the one hand, given a ,∏∈π since the reward function is
bounded and the discount factor (),1,0∈γ the series (5) is convergent.

This yields the existence and uniqueness of .πq On the other hand, given

a action-value function ,: R→× ASq we define the greedy policy qπ by

() ()asqs
a

q ′=π
∈′

,maxarg
A

 for any .S∈s (11)

Considering the Bellman equation of a greedy policy, we introduce
the Bellman optimality problem: Find Q∈q such that

() () ()()aaspqasrasq
a

′γ+=
∈′

,,max,,
A

 for any ., AS ∈∈ as (12)

CONVERGENCE OF THE VALUE ITERATION METHOD FOR … 45

The following two lemmas show that the greedy policy of the unique
solution of the Bellman optimality problem is exactly an optimal policy.

Lemma 3.1. If Assumption (A) is satisfied and Q∈∗∗ 21 , qq are both

the solution of the Bellman optimality problem (12), then ., 21 ∗∗ qq

Proof. We have from (12) that

() () ()() ()() ,,,max,,max,, 2121 




 ′−′γ=− ∗

∈′
∗

∈′
∗∗ aaspqaaspqasqasq

AaAa

., AS ∈∈∀ as

Assume that max ()() ()()aaspqaaspq
AaAa

′>′ ∗
∈′

∗
∈′

,,max,,max 21 and denote

()().,,maxarg:ˆ 1 aaspqa
Aa

′= ∗
∈′

 Then we have

() () ()() ()() 




 ′−γ=− ∗

∈′
∗∗∗ aaspqaaspqasqasq

Aa
,,maxˆ,,,, 2121

 (()() ()()) .,,ˆ,,ˆ,, 21 AS ∈∈∀−γ≤ ∗∗ asaaspqaaspq

Since as, is arbitrary, we obtain

() .01 212121 ≤−γ−⇒−γ≤− ∞
∗∗

∞
∗∗

∞
∗∗ qqqqqq

Since (),1,0∈γ we have .21 ∗∗ = qq And this finishes the proof. 

Lemma 3.2. If Assumption (A) is satisfied and ∗q is the unique

solution of (12), then the greedy policy of ∗q (defined by (11)), ∗πq satisfies

(4).

Proof. Denote the greedy policy of ∗q by .∗π Define the error

() () .,: S∈∀−= π∗π ssvsves

XUANYU LIU et al. 46

We first show the change of the error in the state sequence under
arbitrary policy. Given ∏∈π and ,S∈ts we have from (8), (10), (12)

and (9) that

() () (() ())tttttts asqasqsvsve t ,, ∗π
∗∗ππ∗π −=−=

(() ())tttt asqasq ,, π∗π −+

 (() ()) () ()




 −′γ+−= ++π+∗π

∈′
∗π

∗∗π 111,max,, tttAatttt asqasqasqasq

 (() ()) (() ()) .,, 111 +
γ≥−γ+−= +π+∗π∗π

∗∗π tstttttt esvsvasqasq (13)

Here () () ()ttttttt aspssasa ,,, 1 =∗π=π= +
∗ and ().11 ++ π= tt sa By

deduction, we have for any N∈nm, and nm < that

,1 nmm s
mn

ss eee −γ≥≥γ≥
+

 where () .~,, 10 πss (14)

For any initial state ,S∈s the state sequence is () .~,, 010 π= ssss

Since S is finite, the sequence must arrive a loop and we assume that

mn ss = for some N∈nm, and .nm < Using (14) and the fact

(),1,0∈γ we obtain () 01 ≥γ− −
ns

mn e and thus .0≥nse Using (14)

again, we have

.00 ≥γ≥= ns
n

ss eee

Recalling the definition () (),svsves π∗π −= we show that

() () ., S∈∈π∀≥ ∏π∗π ssvsv (15)

This completes our proof. 

Lemma 3.2 gives an idea to find the optimal policy: solve the Bellman
optimality problem and get its greedy policy. This is the basic idea for
many classic value-based reinforcement learning algorithms like QL and
DQN. QL solves the Bellman optimality problem by iteration while DQN
by gradient decent.

CONVERGENCE OF THE VALUE ITERATION METHOD FOR … 47

Under Assumption (A), with known reward function r and transition
function ,p we can solve the Bellman optimality problem by Richardson

iteration and this is VIM algorithm. Given a initial action-value function
Q∈0q with ,00 ≡q VIM updates the action-value function by

() () ()asqasq ,1,1 kk α−=+

() ()() ,,,,,max, AS
A

∈∈∀




 ′γ+α+

∈′
asaaspqasr

a k (16)

where (]1,0∈α is the step parameter.

The following theorem shows that VIM has an exponential
convergence rate.

Theorem 3.1 (Convergence). If Assumption (A) is satisfied and ∗q is

the solution of the Bellman optimality problem (12), then the action-value

function sequence { }∞=0kkq in VIM (16) satisfies

() .1
11 ∞∞

∗
γ−

γα+α−≤− rqq k
k (17)

Proof. Define R→× AS:ke for 1,0=k with () kk qase =:,

() ().,, asqas ∗− We have from (16) that

() () ()asease ,1,1 kk α−=+

()() ()()().,,max,,max aaspqaaspq
aa

′−′αγ+ ∗
′′ k

This yields

() ()asqasqee tta
′−′γα+α−≤ +∗+′∞∞+ ,,max1 111 kkk

() ∞∞∞ γα+α−≤γα+α−≤ kkk eee 11

() .1 0
1

∞
+γα+α−≤ ek (18)

XUANYU LIU et al. 48

Since ,00 ≡q using (10) leads to

.1
1

0 ∞∞
∗

∞
∗

∞∞
∗

∞ γ−
≤⇒γ+≤= rqqrqe

Combining with (18) gives

() ,1
11 1

1 ∞
+

∞+ γ−
γα+α−≤ re k

k

and this completes our proof. 

4. Acceleration Techniques

In this section, we introduce two classic algorithms in reinforcement
learning: QL [17] and DQN [9]. Then we propose two acceleration
techniques, transition set and multiple steps update, to speed up the
algorithms.

In QL, the Q value is updated once per step and an observation about
reward and next state is necessary. Then the action value of current
state-action pair is updated by its Bellman optimality description. In
every step, a transition ()1,,, +tttt sras is collected to update the Q value

of corresponding pair. However, the update is based on only the current
interface. Considering taking advantages of the past experiences, we
propose the transition set technique. Specifically, we create a transition
set and store all the transitions we obtain. Then in every step, we can not
only update the Q value of current state-action pair, but also all the pairs
in the transition set. The accelerated QL algorithm with transition set is
shown in Algorithm 1.

CONVERGENCE OF THE VALUE ITERATION METHOD FOR … 49

Algorithm 1. Accelerated Q Learning Algorithm

Initialize () 0, =asq for all AS ∈∈ as , and transition set .T

Repeat (for each episode):

Initialize state 0s

Repeat (for each step of episode, :),,1,0 Tt =

Choose action ()asqa tt
a

t ,maxarg
A∈

= with -greedy strategy

Take action ,ta observe 1, +tt sr and store ()1,,, +tttt sras
in transition set T

Update the Q value by

() () () () () .,,,,,max,1,1 T
A

∈′∀




 ′′γ+α+α−=

∈′+ srasasqrasqasq tatt

(19)

We see from Theorem 3.1 that the Q value converges in an
exponential rate if we update all the state-action pairs in every step.
Then in our accelerated algorithm, the Q value will converge in an
exponential rate after the agent finishes exploration. We also expect a
faster convergence rate even when the transition set is not complete,
which can be seen in numerical experiments afterwards.

DQN shares basically the same framework as q leaning. They both
collect the transition and update Q value function in one step. QL models
the Q value function with a table while DQN with a neural network.
Experience replay and target network are two successful skills in DQN.
Experience replay is to obtain uncorrelated samples, which makes the
gradient for the stochastic optimization problem more accurate. The goal
of target network is to cancel the dependence of the bias term in loss
function on the parameter and then the gradient decent could actually
lower the loss. The basic DQN updates the parameter along a zigzag

XUANYU LIU et al. 50

path, taking a single step in a particular direction with each update. A
more effective approach involves taking multiple steps in the same
direction to enhance convergence, and we call this technique “multiple
steps update”. Applying the transition set and multiple steps update
techniques, the accelerated DQN algorithm is shown in Algorithm 2.

Algorithm 2. Accelerated Deep Q-Network Algorithm

Initialize the Q-network ()θ;, asq and the transition set T

Repeat (for each episode):

Initialize state 0s

Repeat (for each step of episode,):,,1,0 Tt =

Choose action ()θ=
∈

;,maxarg asqa t
a

t
A

 with -greedy strategy

Take action ta and observe 1, +tt sr

Store transition ()1,,, +tttt sras in transition set T

Repeat (for each step of update)

Compute ()θ′γ+=
∈

;,max asqry iaii A
 for all elements in

transition set T

Update the Q-network by gradient descent

()() ()θ∇⋅θ−⋅α−θ←θ θ
≤
∑ ;,;,1

iiiii
ni

t asqasqyn (20)

5. Numerical Experiments

In this section, we provide some numerical experiments to show the
effect of our acceleration techniques.

CONVERGENCE OF THE VALUE ITERATION METHOD FOR … 51

In every experiment, we execute training using randomly initialized
Q value over a defined number of episodes. Each episode maintains
uniform step counts and initial states. Continuous Q value training
ensures subsequent episodes inherited the final Q values of the previous
episode. We compare the performance of basic reinforcement learning
algorithms (QL and DQN) and their accelerated algorithms. At each step,

we compute the Q value error ∞
∗−= qqe kk : and the number of known

state-action pairs ., ksaN Additionally, return for each episode is

calculated.

Example 1. Consider a scenario of a treasure hunt for an adventurer
on a 1-dimensional map, where the treasure is located at the far right of
the map. In this example, the adventurer’s position on the map serves as
the state in MDPs. And the available actions for the adventurer include
moving left or right. The reward is 1 when the adventurer gets close to
the treasure and 0 otherwise.

We train for 50 episodes, with each episode consisting of 30 steps.
The Q value error, number of known state-action pairs, and returns
during the training is presented in Figures 1, 2, and 3, respectively. For
the accelerated QL algorithm, Q value error begins a rapid decline at
about 150 steps and exponentially decays upon collecting all state-action
pairs (),12, =ksaN supporting the result in Theorem 3.1. In contrast, for

the basic QL algorithm, even after experiencing all state-action pairs, the
Q value error exhibits no noticeable decrease until about 950 steps.
Furthermore, the accelerated QL algorithm achieves a quicker
convergence to a stable and high return.

XUANYU LIU et al. 52

Figure 1. Q value error ke of the basic QL and accelerated QL.

Figure 2. Number of known state-action pairs k,saN of the basic QL

and accelerated QL.

CONVERGENCE OF THE VALUE ITERATION METHOD FOR … 53

Figure 3. Returns of the basic QL and accelerated QL.

Example 2. Consider an agent moves in a gridworld [15]. The cells of
the grid correspond to the states of the environment. At each cell, four
actions are possible: north, south, east, and west, which deterministically
cause off the grid leave its location unchanged, but also result in a
reward of – 1. Other actions result in a reward of 0, except those that
move the agent out of the special states A and B. From state A, all four
actions yield a reward of 10 and take the agent to A’. From state B, all
actions yields a reward of 5 and take the agent to B’.

We train for 100 episode, with each episode consisting of 200 steps.
The Q value error, number of known state-action pairs, and returns
during the training is presented in Figures 4, 5, and 6, respectively. In
achieving a stable convergent state for Q value error, the accelerated
DQN takes approximately 2500 steps, while the basic DQN requires
nearly 7000 steps. Additionally, concerning return of an episode, the
accelerated DQN notably reaches a stable high-return state at a faster
rate. These observations validate the effectiveness of out acceleration
techniques.

XUANYU LIU et al. 54

Figure 4. Q value error ke of the basic DQN and accelerated DQN.

Figure 5. Number of known state-action pairs k,saN of the basic DQN

and accelerated DQN.

CONVERGENCE OF THE VALUE ITERATION METHOD FOR … 55

Figure 6. Returns of the basic DQN and accelerated DQN.

6. Conclusion

In this paper, we have examined the convergence of the value
iteration method of Bellman optimal problem and demonstrated its
exponential decay in a deterministic environment. This observation
provides insights into potential enhancements for RL algorithms that
rely on VIM, such as Q-Learning and DQN. Drawing upon the concepts
derived from the convergence analysis, we introduce two acceleration
techniques: transition set and multiple step update. These techniques are
incorporated into Q-Learning and DQN to expedite the algorithms, and
numerical experiments are conducted to showcase the acceleration effect.

References

 [1] R. Chopra and S. S. Roy, End-to-end reinforcement learning for self-driving car,
Advanced Computing and Intelligent Engineering (2020), 53-61.

DOI: https://doi.org/10.1007/978-981-15-1081-6_5

 [2] T. Haarnoja, A. Zhou, P. Abbeel and S. Levine, Soft actor-critic: Off-policy maximum
entropy deep reinforcement learning with a stochastic actor, ArXiv: 1801.01290 (2018).

DOI: https://doi.org/10.48550/arXiv.1801.01290

XUANYU LIU et al. 56

 [3] A. Kendall, J. Hawke, D. Janz, P. Mazur, D. Reda, J. M. Allen, V.-D. Lam, A. Bewley
and A. Shah, Learning to drive in a day, In 2019 International Conference on
Robotics and Automation (ICRA) (2018), 8248-8254.

DOI: https://doi.org/10.48550/arXiv.1807.00412

 [4] J. Li, W. Monroe, A. Ritter, D. Jurafsky, M. Galley and J. Gao, Deep reinforcement
learning for dialogue generation, In Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages 1192-1202, Austin, Texas.
Association for Computational Linguistics.

DOI: https://doi.org/10.18653/v1/D16-1127

 [5] Z. Liang, H. Chen, J. Zhu, K. Jiang and Y. Li, Adversarial deep reinforcement
learning in portfolio management, ArXiv: 1808.09940, (2018).

DOI: https://doi.org/10.48550/arXiv.1808.09940

 [6] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. M. O. Heess, T. Erez, Y. Tassa, D. Silver and
D. Wierstra, Continuous control with deep reinforcement learning, ArXiv:
1509.02971, (2015).

DOI: https://doi.org/10.48550/arXiv.1509.02971

 [7] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. P. Lillicrap, T. Harley, D. Silver and K.
Kavukcuoglu, Asynchronous methods for deep reinforcement learning, in
International Conference on Machine Learning (2016), 1928-1937.

DOI: https://doi.org/10.48550/arXiv.1602.01783

 [8] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra and M.
Riedmiller, Playing Atari with deep reinforcement learning, ArXiv: 1312.5602 (2013).

DOI: https://doi.org/10.48550/arXiv.1312.5602

 [9] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A.
Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A.
Sadik, I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg and D. Hassabis,
Human-level control through deep reinforcement learning, Nature 518 (2015),
529-533.

DOI: https://doi.org/10.1038/nature14236

 [10] J. Moody and M. Saffell, Learning to trade via direct reinforcement, IEEE
Transactions on Neural Networks 12(4) (2001), 875-889.

DOI: https://doi.org/10.1109/72.935097

 [11] K. Narasimhan, T. Kulkarni and R. Barzilay, Language understanding for text-
based games using deep reinforcement learning, In Proceedings of the 2015
Conference on Empirical Methods in Natural Language Processing, pages 1-11,
Lisbon, Portugal. Association for Computational Linguistics.

DOI: https://doi.org/10.18653/v1/D15-1001

CONVERGENCE OF THE VALUE ITERATION METHOD FOR … 57

 [12] Y. Nevmyvaka, Y. Feng and M. Kearns, Reinforcement learning for optimized trade
execution, Proceedings of the 23rd International Conference on Machine Learning
(2006), 673-680.

DOI: https://doi.org/10.1145/1143844.1143929

 [13] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman,
D. Grewe, J. Nham, N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach,
K. Kavukcuoglu, T. Graepel and D. Hassabis, Mastering the game of go with deep
neural networks and tree search, Nature 529 (2016), 484-489.

DOI: https://doi.org/10.1038/nature16961

 [14] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra and M. Riedmiller,
Deterministic policy gradient algorithms, Proceedings of the 31st International
Conference on International Conference on Machine Learning 32 (2024), 387-395.

 [15] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction, IEEE
Transactions on Neural Networks 9(5) (1998), 1054-1054.

DOI: https://doi.org/10.1109/TNN.1998.712192

 [16] R. S. Sutton, D. McAllester, S. Singh and Y. Mansour, Policy gradient methods for
reinforcement learning with function approximation, Proceedings of the 12th
International Conference on Neural Information Processing Systems (2000),
Pages 1057-1063.

 [17] C. J. C. H. Watkins and P. Dayan, Q-Learning, Machine Learning 8 (1992), 279-292.

DOI: https://doi.org/10.1007/BF00992698

 [18] Z. Yang, Y. Xie and Z. Wang, A theoretical analysis of deep q-learning, ArXiv:
1901.00137 (2019).

g

