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Abstract 

The main purpose of this work is to realize the noetherization 
construction theory for an integro-differential operator defined by a 
third-kind integral equation in a specific well-chosen functional space. 
Several works carried out by our predecessors in connection with the 
construction of noetherian theory for integro-differential operators 
defined by integral equations of the third kind when the main part of the 
operator is defined in the form of the product of a function ( )xa  by the 

unknown function have been published. The particularity of our research 
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focuses on the case, where the main part of the operator A this time 
contains the product of a function ( )xa  by the derivative of the unknown 

function itself. To achieve the noetherization of the operator A, it was 
necessary to use a rather special approach involving the notion of 
derivative in the Taylor sense of the unknown function. The 
noetherization of operator A is constructed and the solvability conditions 
of the integral equation have been released. An illustrative example has 
been realized at the end of the paper. 

1. Introduction 

The research leading to the construction of the noetherian theory for 
certain types of integro-differential operators defined by integral 
equations of the third kind has been widely inventoried and published in 
certain scientific books and articles (see, for example, the references [1, 2, 
4, 6, 8, 10, 11, 12, 23]) using several specific methods and approaches 
depending on the cases studied. In particular, the case of integro-
differential operators defined by integral equations of the third kind 
whose main part is presented as the product of a function ( )xa  by the 

unknown function has been widely studied when the function ( )xa  under 

the unknown function admits a finite number of zeros, and several 
illustrations have been presented. The methodology for investigating 
such case studies is a well-known process, dealing with serious results 
from the theories of differential equations, functional analysis and 
integral equations. However, in the presence of certain peculiarities and 
specificities, expressed as the main difficulties associated with such an 
investigation, we are sometimes faced in this case with the problem of 
choosing the indicated approach to achieve the goal. Let us recall that the 
study of the solvability of integral equations of the third type while not 
constructing any other theory for the operators defined by such integral 
equations leads us to carefully choose the necessary approaches which 
lead us to the expected goal. In several articles and published works, see 
([1, 2, 4, 6, 7, 8, 10, 13, 18]) and illustrated in [22, 26, 31], also followings 
Prossdorf's research. S. G. Samko, A. A. Kilbas, O. I. Marichev, V. S. 
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Raslambekov, N. S. Gobassov, Roghozin, T. N. Radtchenko, N. N. 
Karapetiants and Abdourahman, it was presented for example the 
methods of normalization and hypersingular integrals to achieve the 
construction of the noetherian theory. Let us underline the importance of 
a special specific approach, called the method of approximate inverse 
operators developed for integral equations of the third kind in the 
functional space of continuous and generalized functions, perfectly 
illustrated in several research activities of imminent mathematicians and 
researchers in this area of operator theory. These different methods cited 
and mentioned above allowed us to properly pose the noetherization 
problem when we approach the investigation of integral equations of the 
first type, or non-Fredholm integral equations of the second type defining 
the different integro-differential operators. Note also that the researchers 
D. A. Shulaia and E. I. Gugushvili, in some of their works carried out the 
investigations of the inverse problem of the spectral analysis of the 
theory of linear multigroup neutron transport in plane geometry in their 
article Transp. Theory Stat. Phys. 29 (2000), No. 6, 711-722. Namely, 
Shulaia  carried out work in the functional space of Hôlder functions on a 
non-homogeneous linear integral equation with coefficient cos x and 
brought out the necessary and sufficient conditions for the solvability of 
the equation considered under certain hypotheses mentioned on its core. 
On the other hand, the researcher also succeeds in carrying out the 
construction of the desired solution analytically, applying the theory of 
singular integral equations and the theory of Fredholm, which is clearly 
illustrated with all the details in reference [28]. 

Similarly, let us also mention that the researcher G. Bal published an 
interesting article on Inverse problems concerning homogeneous 
transport equations specifically, the one-dimensional case is published in 
the work titled Inverse Problems 16 (2000), no 4, 997-1028. 

Let’s also remember the work of investigating the solvency of a 
specific form of an integral equation defined in the following way:  
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( ) ( ) ( ) ( ) ( ) ] [,,,, baxxfdyyyxKxxA
b

a
∈=ϕ+ϕ ∫  

where ( )xA  has at least one zero, carried out in 2017 by the 

mathematician Shulaia. Following his scientific paper titled “Integral 
equation of the third kind for the case of piecewise monotone coefficients” 
published in Transactions of A Razmadze Mathematical Institute 171 
(2017). 396-410 and devoted to a third kind integral equations with 
coefficients, which are piecewise strictly monotone functions having 
simple zeros investigated in Hôlder class, Shulaia using singular integral 
theory equations had released the necessary and sufficient conditions for 
the solvability of the considered equation.  

Thus, in this present work that we carry out, the approach which is 
used in the construction of the noetherian theory of the integro-
differential operator defined by the operator A is based on the application 
of the notion of derivative in the sense of Taylor at the point 0 due to the 
existence of the continuous first derivative of the unknown function 
within the integral equation.  

Namely, we investigate for noetherization the following integro-
differential operator defined by the following third kind integral equation  

( ) ( ) ( ) ( ) ( ),,
1

1
xfdtttxKxxxA p =ϕ+ϕ′=ϕ ∫−  

where the unknown function [ ] ( ) { }[ ],1,1,,1,1 0
1
1 −∈∈−∈ϕ −

pCxfpC N  

and ( )txK ,  satisfying the condition ( ) { }[ ] [ ].1,11,1, 0 −−∈ XCCtxK p  

We organize this work as follows: first of all at the beginning, we 
present in Section 2 the important preliminaries related to the concept 
and the notions of well-known noetherian theory. Section 3 is properly 
devoted to the main results of the investigation presenting the whole 
description of the analysis of the considered problem followed by an 
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illustrative example. Lastly, after an important remark, we summarize 
the content of the work in Section 4 titled Conclusion.  

2. Preliminaries 

 Before presenting in detail our main results, the following definitions 
and concepts well-known from the noetherian theory of operators are 
required. For details in full see also [6, 10, 12, 21, 22]. 

By the way, we briefly also review these important notions of Taylor 
derivatives and concepts of associated operators and associated spaces 
which are widely used when constructing noetherian theory of the 
considered operator A. 

(A) Noetherian operator 

Definition 1. Let YX ,  be Banach spaces, ( )YXlA ,∈  a linear 

operator. The quotient space coker imAYA /=  is called the cokernel of 

the operator A. The dimensions ( ) ( ) AkercoAAA dim,kerdim =β=α  

are called the nullity and the deficiency of the operator A, respectively. If 
at least one of the numbers ( )Aα  or ( )Aβ  is finite, then the difference 

( ) ( )AAIndA β−α=  is called the index of the operator A. 

Definition 2. Let YX ,  be Banach spaces, ( )YXlA ,∈  is said to be 

normally solvable if it possesses the following property: The equation 
( )YyyAx ∈=  has at least one solution ( ) ( )ADADx (∈  is the domain of 

A) if and only if ( )⊥∈∀>=< imAffy 0,  holds. 

We recall that by the definition of the adjunct operator 

( ) ∗⊥ = AAim ker  and it’s prove in [11] that the operator A is normally 

solvable if and only if its image space imA  is closed.  

Definition 3. A closed normally solvable operator A is called a 
noetherian operator if its index is finite. 
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By the way, we briefly review this important notions of Taylor 
derivatives which is widely used when constructing noetherian theory of 
the considered operator A. 

Definition 4. A Continuous function ( ) [ ]1,1−ϕ Cx ε  admits at the 

point .0=x  Taylor derivative up to the order N∈p  if there exists 

recurrently for ,,,2,1 p…=k  the following limits: 

{ }( ) ( )
{ }( ) .!

0lim!0
1

00 






 ϕ−ϕ=ϕ ∑ −

=
−

→
j

j

jx
xjxx

kkk k   (2) 

The class of such functions ( )xϕ  is denoted { }[ ].1,10 −pC  

Next, let us move to the following part. 

Let [ ] ,,1,1 +∈− ZmCm  note the Banach space of continuous 

functions on [ ],1,1−  having continuous derivatives up to order ,m  for 

which the norm is defined as follows:  

( ) [ ]
( )( ) .max

1101,1 xx j
X

m

jCm ϕ=ϕ
≤≤−=− ∑   (3) 

So, we can consider { }( )0kϕ  are defined for all .,,2,1 p…=k  

We define { }[ ]1,10 −pC  as a subspace of continuous functions, having 

finite Taylor derivatives up to order ;+∈ Zp  and when ,0=p  we put 

( { }[ ] { }[ ] [ ])).1,11,11,1 0
00 −=−=− CCC p  

Let us also define a linear operator kN  on the space { }[ ]1,10 −pC  by 

the formula:  

( ) ( )
( )

{ }( )

.,,2,1,!
01

0 p
x

xjx
xN

j
j

j …=

ϕ−ϕ
=ϕ

∑ −

= kk

k

k    (4) 
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One can easily verify the property ,0, 111 kkkkkk ≤≤= −NNN  

,, 1 +∈ Zkk  where we put .0 IN =  

Definition 5. The operator pN  is called characteristical operator of 

the space { }[ ].1,10 −pC  

Remark. The sense of the previous definition can be seen from the 
verification of the following lemma and also for more details, see [23, 28, 
29].  

Lemma 2.1. A function ( )xϕ  belongs to { }[ ]1,10 −pC  if and only if, the 

following representation:  

( ) ( ) ,
1

0
k

kk
xxxx

pp α+φ=ϕ ∑ −

=
  (5) 

holds with the function ( ) [ ],1,1−∈φ Cx  and kα  being constants.  

To prove Lemma 2.1, it is enough to observe that (5) implies that the 
Taylor derivatives of ( )xϕ  up to the order p exist, and more 

{ }( ) { }( ) ( )0!0,1,,2,1,0,!0 0 φ=ϕ−=α=ϕ pp…kk k
k  with ( ) ( )ϕ=φ kNx  

( ).x  Conversely, if ( )xϕ  belongs to { }[ ],1,10 −pC  and we define 

( ) ( ) ( )xNx ϕ=φ k  with 
{ }( ) ,1,,2,1,0,!

0 −=ϕ=α p…k
k

k
k  then the 

representation (5) holds. From Lemma 2.1, it follows that for 

( ) { }[ ]1,10 −∈ϕ pCx  the equality  

( ) ( ) ( )
{ }( ) ,!

01

0
k

k

k
k

k
xxNxx

pp ϕ+ϕ=ϕ ∑ −

=
  (6) 

is valid.  

Consequently, the linear operator pN  establishes a relation between 

the spaces { }[ ]1,10 −pC  and [ ].1,1−C  The space { }[ ]1,10 −pC  with the norm  
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{ }[ ] [ ]
{ }( ) ,0

1

01,11,10
k

k
ϕϕϕ ∑ −

=−− +=
p

C
p

C Np   (7) 

becomes a Banach space one.  

Let note also that we can define the previous norm by the following 
way:  

{ }[ ] [ ] ( ) [ ] .
1

01,1
1

01,11,10 kkkk
α+φ=α+ϕ=ϕ ∑∑ −

=−
−

=−−
p

C
p

C
p

C xNp  

Sometimes it is comfortable and suitable to consider as norm in the space 
{ }[ ]1,10 −pC  the equivalent norm defined as follow: 

{ }[ ] [ ].1,10
1,1

1
0 −=

− ϕ=ϕ ∑ C
jp

j
C Np   ( )∴  

We can also note a very useful and clearly helpful next inequality:  

[ ] [ ]
{ }( ) { }[ ].0 1,1

1

01,11,1 0 −
−

=−− ϕ=ϕ+ϕ≤ϕ ∑ pC
jp

jC
p

C N   (8) 

Therefore, it is obvious to see that [ ] { }[ ].1,11,1 0 −− ϕ≤ϕ pCC  

Finally, note that from the Lemma 2.1 follows the following fact, if 

( ) [ ],1,1−∈ϕ Cx  then ( ) { }[ ].1,10 −∈ϕ pp Cxx  This assertion may be 

generalized as follows. 

Lemma 2.2. Let ., +∈∈ ZN sp  If ( ) { }[ ]1,10 −∈ϕ sCx  then, 

( ) { }[ ],1,10 −∈ϕ +spp Cxx  and the formula holds  

( ( )){ }( )
( )

{ }( )







+=ϕ
−

−=

=ϕ
− .,,,0!

!

,1,,1,0,0
0

sppjpj
j

pj
xx pj

jp
…

…
  (9) 
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Proof. Note that a stronger assumption on the function ( ),xϕ  such 

that ( ) { }[ ]1,10 −∈ϕ +spCx  would allow us to easily prove the lemma just 

by applying the Leibniz formula. 

For 0=s  the statement has already been proved above, so 

( ) { }[ ],1,10 −∈ϕ pp Cxx  and ( ( )){ }( ) 1,,0,00 −==ϕ pjxx jp …  and 

( ( )){ }( ) ( ).0!0 ϕ=ϕ pxx pp  Now, let us prove that ( ( )){ }( ) =ϕ 0jp xx  

( )
{ }( ) .,,1,0!

! sppjpj
j pj ++=ϕ
−

− …  Since the derivatives are defined 

recurrently, and (8) is true for ,pj =  then it is sufficient to verify the 

passage from j to .1+j  We have:  

( ( )){ }( ) ( )
( ) ( )

{ }( )

10
1

0!lim!10
+

−
=

→
+

ϕ
−

−ϕ
+=ϕ

∑
j

pl
lj

pl
p

x
jp

x
pl

xxx
jxx  (10) 

( )
( )

{ }( )
( )

( )
{ }( ).0!1

!1!
0

lim!1 1
1
0

0
pj

pj

llpj

l
x pj

j
x

l
xx

j −+
−+

−

=

→
ϕ

−+
+

=

ϕ
−ϕ

+=
∑

 (11) 

Lemmas 2.1 and 2.2 imply the next following important lemma.  

Lemma 2.3. Let ( ) { }[ ] N∈−∈ pCxf p ,1,10  and ( ) { }10 −== rff …  

( ) .1,00 pr ≤≤=  Then it holds the assertion:  

( ) { }[ ].1,10 −∈ −sp
r C

x
xf   (12) 

Let us state the following important lemma relative to the characteristical 

operator of the space { }[ ].1,10 −pC   

Lemma 2.4. The operator { }[ ] [ ]1,11,1: 0 −→− CCN pp  has the 

following properties: 
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(1) pN  is bounded, and [ ] { }[ ];1,11,1 0 −− ϕ≤ϕ pCC
pN   

(2) pN  is right invertible;  

(3) ( ) ,pN p =α  where ( )pNα  is the dimension of the null subspace 

for .pN  

Proof. Statement (1) follows from the definition of the norm in (7). 

The invertibility is justified by the fact that the equation fN p =ϕ  with 

an arbitrary ( ) [ ]1,1−∈ Cxf  has a solution ( ) ( ) { }[ ],1,10 −∈=ϕ pp Cxfxx  

which follows from Lemma 2.1 and the equality ( ( )) ( ).xfxfxN pp ≡  By 

(2) and noticing that 0=kxN p  for all ,1,,1,0 −= p…k  we arrive at to 

the point (3). 

The lemma is proved.  

Note that from the proof of this lemma, it follows that the equation 

gfN p =  is always solvable in the space { }[ ]1,10 −pC  for every 

( ) [ ],1,1−∈ Cxg  and its general solution has the form 

( ) ( ),
1

0
xgxxcxf pp

+= ∑ −

=
k

kk
  (13) 

where kc  are arbitrary constants. Note that for the Taylor derivatives, 

many formulas are valid similar to those for ordinary derivatives; in 
particular, Leibniz formula, l’Hospitale rule and others see [11, 13]. 
Nevertheless, for example, the formula  

( )( ) { }( ) { }( )00|| rrx +ϕ=ϕ kk   (14) 

is not always valid.  
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Definition 6. We designate through { }[ ]1,1,1
0,1

1 −= pPP  the space of 

distributions on the space of test functions { }[ ]1,10 −pC  such that: 

( ) ( ) { }( ),1
0 x

x
xzx p
P

k
kk δβ+=/ ∑ −

=
υ  where ( ) { }[ ] [ ],1,11,1 1

10 −−∈ −CCxz p ∩  

-kβ arbitrary constants.  

We underline that { }( )xkδ  is the k-th derivative of the Dirac delta 

function defined by the following way { }( ) ( ) ( ) { }( ).01),( kkk ϕ−=ϕδ xx  

Let us introduce a norm in the space 1P  in the following way:  

{ }[ ] [ ] .
1

0
1,11,1 1

0
1 k

k
β++=/ ∑

−

=
−−

p

CCP zz pυ  

(B) Associated operator and associated space 

Definition 7. The Banach space ∗⊂′ EE  is called associated space 
with the space E, if ( ) EEfcf ϕ≤ϕ ′,  for every ., EfE ′∈∈ϕ  

We note that the initial space E can be considered associated with the 
space E'. Moreover, the norm Ef ′  is not obliged to be equivalent to the 

norm .∗Ef  

Let be noted ( )21, EEL  the Banach algebra of all linear bounded 

operators from 1E  into .2E  

Definition 8. Let 2,1, =jE j  two Banach spaces and 2,1, =′ jE j  

their associated spaces. The operators ( )21, EEA L∈  and 

( )12, EEA ′′∈′ L  are called associated, if ( ) ( )ϕ=ϕ′ AffA ,,  for all 2Ef ′∈  

and .1E∈ϕ   

It seems that we can formalize the noetherity in terms of associated 
operator and associated space. See [22, 26].  
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Lemma 2.5. Let 2,1, =jE j  two Banach spaces and 2,1, =′ jE j  

their associated spaces and, let ( )21, EEA L∈  with ( )12, EEA ′′∈′ L  be 

associated noetherian operators and more,  

( ) ( ).AA ′α−=α  

Then, for the solvability of the equation fA =ϕ  it is necessary and 

sufficient that ( ) 0, =/υf  for all solutions of the homogeneous associated 

equation .0=/′υA   

Let us state without proof the following important theorem:  

Theorem 2.1. The space { }[ ]1,1,1
0,1

1 −= pPP  is a banach space 

associated with the space { }[ ].1,10 −pC   

Definition 9. We say that the kernel ( ) { }[ ] [ ],1,11,1, 0 −−∈ XCCtxK p  

if ( ) [ ] [ ]1,11,1, −−∈ XCCtxK  and it holds the representation 

( ) ( ) ( ),,~, 1
1

0
txKxxtctxK pp

+= ∑ −

=
k

kk
  ( )∗  

where ( )txK ,~
1  is continuous by the arguments [ ]1,1, −∈tx  and 

( ) [ ].1,1−∈ Ctck  

In other words, ( )txK ,  has Taylor derivatives by the argument x at 

the point ( )t,0  under any [ ].1,1−∈t  

Next, let us move to the presentation of the general important results 
of the work in the following section.  

3. Main Results 

In this section, we undertake properly the noetherization 
investigation of the integro-differential operator A defined by the formula 
(1).  
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Namely, here we consider as a model to be investigated, the integro-
differential operator defined by the formula (1).  

(A) The main part of the equation 

First of all let consider the main part designated L of the operator A  
with the multiplication operator with a function of the following form: 

( ) ( ) ( ) [ ],1,1; −∈=ϕ′=ϕ xxfxxxL p  (15) 

where we suppose ( ) { }[ ].1,1, 0 −∈∈ pCxfp N  It is obvious that the 

homogeneous equation ( ) 0=′ xyx p  in the space [ ]1,11 −C  admits only 

trivial solution ( ) .0=ϕ x  Under consideration of the nonhomogeneous 

equation with respect to ( ) { }[ ]1,10 −∈ pCxf  represented in the form 

( ) ( ),1
0 xgxxcxf pp += ∑ −

=
k

kk  where 
{ }( )

!
0

k

k
k

fc =  and ( ) ( ) ∈= xfNxg p )(  

[ ],1,1−C  we have ( ) ( ) .1 1
0

k
kk xc

x
xgx p

p ∑
−
=

+=ϕ′  From that for the 

solvability in the space of continuous functions, it is necessary and 

sufficient that ,1,,0,0 −== pc …kk  or the same as { }( ) ( )( ) .0, =δ xfxk  

In this case, with respect to the condition ( ) ,01 =−ϕ  the equation (15) 

has only a unique solution ( ) ( ) .
1

dttftx px −
−∫=ϕ   

Therefore the operator L has the characteristic numbers ( ),,0 pd  i.e., 

( ) ( ) ,,0 pLL =β=α  and the index ( ) .pL −=χ  

Our following objective is to verify that the obtained solvability 
conditions are the same as the orthogonality conditions of the solutions of 
the homogeneous associated equation. For this matter, consider the 
operator L′  of the following form:  

( ) ( ) ( ),)( xhxxL p =′/−=/′ υυ   (16) 
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which acts from 1P  into [ ].1,1−C  It is not difficult to verify with respect 

to the condition ( ) ( ) ,011 ==−ϕ z  that for every ( ) 1Px ∈/υ  and 

( ) [ ],1,11
1 −∈ϕ −Cx  it holds the relationship ( ) ( )υυ /′ϕ=/ϕ LL ,,  as L and 

L′  are associated operators. 

 The associated homogeneous equation ( ) ( ) 0)( =′/−=/′ υυ pxxL  in the 

space 1P  with respect to the representation from definition 6 for the 

( ),xυ/  has the solution of the form ( ) { }( ),1
0 xx p k
kk δβ=/ ∑ −

=
υ  where -kβ are 

arbitrary constants. We note that the { }( )xkδ  are linearly independent 

distributional functions. 

From the previous analysis, let us now formulate the following 
lemma.  

Lemma 3.1. The operator [ ] { }[ ]1,11,1: 0
1
1 −→−−

pCCL  is noetherian 

and with the characteristic numbers ( ).,0 p  The nonhomogeneous 

equation fL =ϕ  is solvable under the accomplishment of p conditions of 

orthogonality { }( ) ( )( ) 1,,0,0, −==δ pxfx …kk  to all the solutions of the 

associated homogeneous equation 0=/′υL  in the associated space .1P  

Under accomplishment of these conditions, the nonhomogeneous equation 

has a unique solution ( ) ( )dttftx px −
−∫=ϕ
1

 in the space [ ].1,11
1 −−C  

The associated nonhomogeneous equation defined by the operator 

[ ]1,1: 1 −→′ CPL  with respect to (16) under every ( ) [ ]1,1−∈ Cxh  has 

in the associated space 1P  the solution of the following form:  

( ) ( ) { }( ),1 1

0

1
xdtth

x
x

p

xp
k

kk
δβ+=/ ∑∫

−

=
υ   (17) 

with arbitrary constants .1,,0, −=β p…kk   
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Let us globalize all of that in the form of a lemma.  

Lemma 3.2. The operator [ ]1,1: 1 −→′ CPL  is noetherian and with 

the characteristic numbers ( ).0,p  The nonhomogeneous equation 

hL =/′υ  has a solution defined by the formula (17).  

Next, let us investigate the compactness of the integral operator.  

(B) Compactness criterion of the integral operator 

Let us consider the following integral operator  

( ) ( ) ( ) ( ) [ ],1,1,,
1

1
−∈= ∫− xdtttxKxK ϕϕ   (18) 

with the kernel ( )txK ,  satisfying the condition  

( ) { }[ ] [ ].1,11,1, 0 −−∈ XCCtxK p   (19) 

Theorem 3.1. Let be accomplished the condition (19). Then the 
operator K of the form (18) completely continuous operator from 

[ ]1,11
1 −−C  into { }[ ].1,10 −pC   

Proof. The proof follows from the schema of the proof of the same 

fact from [13, 14]. Let ( ) [ ].1,11
1 −∈ϕ −Ct  

Let’s reassure ourselves at the beginning that ( )( ) { }[ ].1,10 −∈ϕ pCtK  

Using the representation ( )txK ,  in the form ( ),∗  we have: 

( )( ) ( ),~1

0
xxxcxK pp

Ω+=ϕ ∑ −

=
k

kk
  (20) 

where it is denoted  

( ) ( ) ( ) ( ) ( ) .,~,~
1

1

1

1

1
dtttxKxdtttcc ϕ=Ωϕ= ∫∫ −−

kk  
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Considering that ( ) [ ],1,1−∈Ω Cx  we obtain ( )( ) { }[ ].1,10 −∈ϕ pCxK  From 

(20), it is easy to deduce the following approximation: 

{ }[ ] [ ],1,11,10 −− ϕ≤ϕ CC cK p   (21) 

where ( ) ,max,)(2 1
0 tcMMMc

t

p
kkkk =+= ∑ −

=
 and ( ) .,~max 1,

txKM
tx

=   

Lastly, let us prove that the operator K translates any bounded set 

{ } [ ]1,11
10 −⊂ϕ= −CM  in a relatively compact set into { }[ ].1,10 −pC  

For this matter, we will use the following compactness criterion in 

the space { }[ ]1,10 −pC  refer to [13, 14]. 

Lemma 3.3. The set { }[ ]1,10 −⊂ pCM  is relatively compact into the 

space { }[ ]1,10 −pC  if and only if, when: 

(a) The set M  is bounded; 

(b) The family of continuous functions ( )MpN  is equicontinuously on 

the segment [ ].1,1−  

The proof of this lemma from [13] consists of the repetition with some 
not great changes of the proof of the Arzela criterion. 

Here we conduct another form of the proof which will allow us next to 
expand it also to our further research. 

Proof. The necessary conditions (a) of the theorem follows directly 
from the boundedness relatively compact set. Concerning the condition 

(b), then the boundedness operator { }[ ] [ ]1,11,1: 0 −→− CCN pp  

translates the relatively compact set M  into ( )MpN  in { }[ ]1,10 −pC  

relatively compact in [ ]1,1−C  and then (b) follows from the Arzela 

criterion. 
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Sufficiency. Using the condition (a) and the equivalent norm in the 

space { }[ ]1,10 −pC  given by the formula ( ),∴  we see that 

( ) [ ] { }( ) ,,,1,0,1,1, pjrftrtf j …=≤−∈≤  for all .M∈f  With 

respect to the obvious equality (7) and taking into consideration the 

equicontinuity of ( ) ,,)( M∈fxfN p  uniformly continuity of power 

functions ,,,0, pjx j …=  and uniformly boundedness { }( ) ,0 rf j ≤  

,,,1,0 pj …=  follows the equidistant continuity ( ) .M∈xf  Therefore 

by the Arzela criterion, M  relatively compact in [ ],1,1−C  and then with 

respect to the uniformly boundedness { }( ) pjf j ,,1,0 …=  and Bolzano 

lemma follows the relatively compactness in the space { }[ ]1,10 −pC  which 

was what needed to be proven. 

Continuing the proof of the theorem, let us apply this criterion. As 

0M  is a bounded set, then by virtue of (21) it follows that and 

( ) { }[ ]1,100 −⊂= pCK MM  also a bounded set. It remains to convince 

ourselves that the family of the functions ( ) ppp NNKNh =∈ϕ= M  

( ),0MK  where it is designed ( ) ( ) ( ) ,,~
1

1
1

dtttxKxh ϕ= ∫−  equidistant 

continuous. 

Approximating the difference ( ) ( ) ,21 xhxh −  we obtain 

( ) ( ) ( ) ( ) [ ].,~,~max2 1,12111,,21
21

−ϕ





 −=− Ctxx

txKtxKxhxh  

It remains to consider that the function ( )txK ,~
1  is uniformly continuous 

by the argument [ ],1,1, −∈tx  and this ends the proof of the Theorem 

3.1.  

Now, let us consider the associated operator defined by the following 
formula:  
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( ) ( ) ( ) ( ) [ ].1,1,,
1

1
−∈/=/′ ∫− xdttxtKxK υυ   (22) 

The following theorem gives the condition of its compactness from 1P  
into [ ].1,1−C  

Theorem 3.2. Let the kernel ( )xtK ,  satisfying the condition (19). 

Then the operator K ′  is compact from 1P  into [ ].1,1−C  

Proof. For the function ( )xυ/  from 1P  we have the analytical 

representation: ( ) ( ) { }( ),1
0 x

x
xzx p
p

k
kk δβ+=/ ∑ −

=
υ  where ( ) { }[ ]1,10 −∈ pCxz  

[ ]1,11
1 −−C∩  with respect to the previous, we obtain the following result: 

( ) ( ) ( ) ( ) ( ) { } ( ),,01, 1

1

0

1

1
xKdt

t
tzxtKxK j

j
j

p

j
p β−+=/′ ∑∫

−

=
−

υ  

where { }( )xK j ,01  designates the Taylor derivative of the kernel ( )xtK ,  

by the variable t at the point ( )x,0  under [ ].1,1−∈x   

By the supposition made in the theorem, the kernel ( )xtK ,  is 

representable in the following form ( ) ( ) ( ),,~, 1
1
0 xtKttxcxtK pp += ∑ −

=
k

kk  

where ( )xck  and ( )xtK ,~
1  are continuous functions. Using the previous, 

we find: 

( ) ( ) ( ) ( ) ( ) ( )dtxtKtzdt
t

tzxcxK p

p
,~

1
1

1

1

1

1

0
∫∫∑ −−−

−

=

+=/′ kk
k

υ  

( ) { } ( ).,01 1

1

0
xK j

j
j

p

j
β−+ ∑

−

=
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There, the first and the third terms are finite-dimensional operators, and 
the second term - completely continuous from [ ]1,1−C  into [ ].1,1−C  The 

theorem is proved. 

(C) The main operator A 

Consider the integral operator defined by the formula (1) as operator 

acting from [ ]1,11
1 −−C  into { }[ ]1,10 −pC  with the supposition that the 

kernel ( )xtK ,  satisfy the condition (19). 

Theorem 3.3. The operator [ ] { }[ ]1,11,1: 0
1
1 −→−−

pCCA  defined by 

the equality (1) is noetherian with the index ( ) .pA −=χ  

Proof. The affirmation of Theorem 3.3 easily can be deduced with 
respect to Lemma 3.1, to Theorem 3.1, and a well-known fact on the 
conservation of the index under perturbation of a noetherian operator by 
a completely continuous operator. For this, it is sufficient to remark that 

.KLA +=  

Besides the operator A defined by the formula (1), now consider the 
associated operator A′  given in the following way:  

( ) ( ) ( ) ( ) [ ].1,1,,)(
1

1
−∈/+′/−=/′ ∫− xdttxtKxxA p υυυ   (23) 

Supposing previously that the kernel ( )xtK ,  satisfying the condition ( ).∗  

Similarly to the Theorem 3.3, we can prove the following theorem: 
Namely, we state.  

Theorem 3.4. The operator [ ]1,1: 1 −→′ CPA  is noetherian with 

the index ( ) .pA =′χ  

Let us convince ourselves that the operators A and A′  are associated 
operators.  
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Lemma 3.4. The operators [ ] { }[ ]1,11,1: 0
1
1 −→−−

pCCA  and 

[ ]1,1: 1 −→′ CPA  verify the relationship [ ] :),1,1( 11
1 PC ∈/−∈ϕ − υ   

( )( )( ) ( )( )( ) .
1

1

1

1
dttAtdttAt ϕ′/=ϕ/ ∫∫ −−

υυ   (24) 

Proof. For the proof of (24), it is sufficient from the definition of the 

space 1P  to represent ( )tυ/  in the form ( ) ( ) { }( ),1
0 xxzxx pp k

kk δβ+=/ ∑ −
=

−υ  

where ( ) { }[ ] [ ]1,11,1 1
10 −−∈ CCxz p ∩  and ( ) .01 =z  And next with respect 

to the Lemma 2.1, compare the left and the right terms of the 

relationship (24). 

As the operators A and A′  are noetherian associated operators and 

( ) ( ),AA ′χ−=χ  then based on Lemma 2.5 we obtain the main general 

assertion. 

Theorem 3.5. The equation ,fA =ϕ  where the operator A is defined 

by the formula (1) and the function ( ) { }[ ]1,10 −∈ pCxf  is solvable in the 

space [ ]1,11
1 −−C  if and only if:  

( ) ( ) ( ),,,2,1,0
1

1
Adtttf ′α==/∫− …kkυ  

where { }−/ kυ  is the basis of the space of the solutions of the associated 

homogeneous equation 0=/′υA  in the space .1P   

(D) Illustrative example 

Let us give an illustrative example by considering the following 

integro-differential operator defined by the next:  
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( ) ( ) ( ) ( ),
1

1
xfdtttxxxA =ϕ+ϕ′=ϕ ∫−   (25) 

where ( ) { }[ ]1,11
0 −∈ Cxf  and we look for the solution ( )xϕ  from the space 

[ ].1,11
1 −−C  It is not difficult to verify that this equation has a unique 

solution ( ) ( )( ) ,
1

dttNfx
x
∫−=ϕ  only and only if it is accomplished the 

following condition:  

( ) ( )( ) .0
1

1

1
dssNftdtf

t

∫∫ −−
=  

The last after interchanging the order of integration and simple 
calculation can be written in the following way:  

( ) ( ) ( )[ ] ( ) ,002
1

1
=−−∫− fdsssfsNf   (26) 

or in the more simple way 

( ) .021, =




 δ−− sssf  

It is not difficult to prove that the function of the form 

( ) ( )xxxx δ−−=/ 21υ  is the unique linear independent solution of the 

associated homogeneous equation 0=/′υA  in the associated space .1P  

Let us recall that in this case it is indicated to look for ( )tυ/  in the form of 

( ) ( ) ( ),tt
tzt βδ+=/υ  where ( ) { }[ ] [ ].1,11,1) 1

1
1

0 −−∈ CCtz ∩  Therefore, the 

condition (26) on the function ( )xf  is the condition of the orthogonality to 

the unique nontrivial solution of the associated homogeneous equation 
.0=/′υA   
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4. Conclusion 

This achieved scientific work presents in full detail the completed 
investigation of the establishment and the construction of noetherian 
theory for the integro-differential operator A, defined by a third kind 
integral equation depending of the parameter ,N∈p  in the functional 

space of continuous functions [ ].1,11
1 −−C   

We firstly found the solvability condition of the equation (16) and this 
step lead us to determine the deficient numbers of the considered 
operator L denoted ( )βα,  and, from that therefore is deduced the index 

ϰ (L), which is finite in all cases, making clearly the operator L to be 

noetherian. At the same time we also studied the associated operator L′  
in the functional spaces indicated, also showing that it is also noetherian. 
On the basis of the well-known fact on the conservation of the index 
under perturbation of a noetherian operator by a compact operator, we 
reach the needed result. At the end of this work, we illustrate the 
investigated noetherian property by a clear and concise example. 
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