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Abstract 

Let V be a total valuation ring of a skew field Q,K  be the additive 

group of the rational numbers, and ( )KAut  be the group of 

automorphisms of K. Let ( )KAut→σ Q:  be a group homomorphism, 

[ ]σ,QK  be the skew group ring of Q  over K, and ( )σ,QK  be its 

quotient ring. Let { }0,,0 ≥∈∈= ∑ iir
r

r rrKaxaR i
i

i Q  and 

.00 RxP r
r>= ∪  Consider the natural map ϕ  from PR0  to K and set 

i ( )1 .V V−= ϕ  It is shown that iV  is a total valuation ring of ( )σ,QK  
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and it is characterized by rx  and V. If V is an invariant valuation ring, 

σ  is classified into three types, in order to study the structure of iVΓ  

(the value group of i ) .V  

1. Introduction 

Let K be a skew field and V be a total valuation ring of K. We assume 
that KV =/  throughout this paper. Let ( )KAut→σ Q:  be a group 

homomorphism and [ ]σ,QK  be the skew group ring of Q  over K. In [7], 

it was proved that [ ]σ,QK  had a quotient skew field ( )., σQK  In [1], the 

authors initiated an investigation of total valuation rings ( )., σxK  It was 

shown that there were at least two total valuation rings in ( )., σxK  In 

[2], [5], [8] and [9], extensions of V in ( )σ,xK  had been studied. 

Let Q be a simple Artinian ring and σ  be an automorphism of Q. Let 

[ ]σ,xQ  be the skew polynomial ring over Q in an indeterminate x. Then 

[ ]σ,xQ  has a quotient ring ( )., σxQ  In [6], the authors studied the 

noncommutative valuation rings in ( )., σxQ  In the case Q is a skew field 

and V is an invariant valuation ring, in order to study the structure of 

i ,VΓ σ  is classified into five types. 

In this paper, we will construct the total valuation ring iV  in 

( )., σQK  In [10], the authors give a complete classification of graded 

extensions in ( )., σQK  

In [4], Wadsworth defined the RΓ  of a Dubrovin valuation ring R of a 

simple Artinian ring Q as follows; let ( ) { ( ) },1 RqRqQUqRst =∈= −  the 

stabilizer of R under the action of ( )QU  and ( ) ( )./ RURstR =Γ  If R is 

invariant in a skew field Q, then RΓ  coincides with the usual value group 

of R. 
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Let V be an invariant valuation ring of a skew field K, we classify σ  

into three types and give the complete structure of (i ).st V  

2. Preliminaries 

In this section, we collect some notations, definitions and known 
results. Let R be a ring, we denote the Jacobson radical of R by ( )RJ  and 

the units of R by ( ).RU  Set { }.0>∈=+ rr QQ  

Definition 2.1 ([3]). Let K be a skew field with subring V, for any 

,Ka ∈  if Va ∉  implies ,1 Va ∈−  then V is called a total valuation ring 

of K. 

Definition 2.2 ([3]). Let V be a total valuation ring of a skew field K, 

we say that V is invariant if VV =−1kk  for any non-zero .K∈k  

Definition 2.3 ([3]). Let V be an invariant valuation ring of a skew 

field ( ) ( )VUKUK V /, =Γ  is called the value group of V. 

Definition 2.4 ([4]). Let V be a total valuation ring of a skew field K. 

( ) { ( ) }VVKUVst =∈= −1kkk  is called the stabilizer of V under the 

action of ( ).KU   

Set { }.0,,0 ≥∈∈= ∑ iir
r

r rrKaxaR i
i

i Q  We can easily get the 

following lemmas. 

Lemma 2.5. For any ,,,, 021 Rfff l ∈"  there exists a natural 

number m, such that [ ( ) ].,,,, 1
21

1

ml mxKfff σ∈"  

Lemma 2.6. 0R  is an Ore ring and ( )σ,QK  is its quotient skew field.  
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3. Construction of iV  

Let K be a skew field and ( )KAut→σ Q:  be a group 

homomorphism. Let { }.0,,0 ≥∈∈= ∑ rrKaxaR r
r

r Q  For any ,Ka ∈  

( ) ( ) ,, rr xaraxr σ=∈ +Q  by Lemma 2.6, 0R  has a quotient ring 

( )., σQK  

Let .00 RxP r
r>= ∪  Then P is a maximal ideal of .0R  We can easily 

prove that P is localizable. Let { }PRgRffgRT P \, 00
1

0 ∈∈== −  be 

the localization of 0R  at P. Then T is a total valuation ring of ( )σ,QK  

with ( ) .0 TxTJ r
r>= ∪  

For any ,1 Tfg ∈=α −  where +=+++= 00 ,1
1 cgxaxaaf n

n
r

r
r

r "  

m
m

s
s

s
s xcxc ++"1
1  with .00 =/c  We denote the map  

KT →ϕ :  

by ( ) .1
00
−=αϕ ca  We start with the following lemmas: 

Lemma 3.1. With the notations above, ϕ  is a ring epimorphism with 

.ker 0 Txr
r>=ϕ ∪  

Proof. By using the Ore condition for ,\0 PR  it is easy to see that ϕ  

is well defined and a ring homomorphism. It is also clear that ϕ  is an 

epimorphism and Txr
r 0ker >=ϕ ∪  by the definition of .ϕ  

Let V be a total valuation ring of K. Set i ( ) ( )1 ,V V V J T−= ϕ = +  the 

complete inverse image of V by .ϕ  

Lemma 3.2. iV  is a total valuation ring of ( )., σQK  
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Proof. For any non-zero ( ),, σ∈α QK  let .,, 0
1 Rgffg ∈=α −  We 

can write rxff 1=  and sxgg 1=  with PRgf \, 011 ∈  for some .0, ≥sr  

So .1
11

1 −−− = gxffg sr  If ,0>− sr  then ( ) i.J T Vα ∈ ⊆  If ,0<− sr  then 

( ) i1 .J T V−α ∈ ⊆  Let 0=− sr  and ( ) .a=αϕ  If ,Va ∈  then i.Vα ∈  If 

,Va ∉  then ( ) ,, 111 VaVa ∈=αϕ∈ −−−  so i1 .V−α ∈  Hence iV  is a 

total valuation ring of ( )., σQK  

Set { }.0\VV =∗  Then we have: 

Lemma 3.3. ∗V  is an Ore set of iV  and i { i1 ,VT V c V∗ −= = α α ∈  

}.c V ∗∈  

Proof. For any ,T∈α  there exists ∗∈ Vc  with ( ) .Vc ∈αϕ  Then 

( ) ( ) i, .c c V c Vϕ α = ϕ α ∈ α ∈  Set ., 1−β=αα=β cc  For any i,Vγ ∈  

,∗∈ Vd  .1 Td ∈γ−  Hence there exist ∗∈ Vc  and iVβ ∈  with 

,11 −− β=γ cd  i.e., .β=γ dc  Therefore, ∗V  is a right Ore set of i.V  

Similarly, we can prove that ∗V  is a left Ore set of i.V  Now it is clear 

that iVT V ∗=   

Now we consider the Jacobson radical of iV  and its residue skew 

field. 

Lemma 3.4. i ( ) ( )( )J V J V J T= +  and i i ( )/ ( ) / .V J V V J V≅  

Proof. Let I be a maximal right ideal of i.V  Then ( ).TJI ⊇  

Furthermore, i ( )/ .V J T V≅  Hence i ( )( ) ( )J V J V J T= +  and i i/ ( )V J V ≅  

/ ( ).V J V  
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Since ( ) ( ) rr xarax σ=  for any ( )rrKa σ∈∈ ,, Q  naturally extends 

to an automorphism of ( )σ,QK  for any ,Q∈r  which is the conjugation 

by .rx  We denote it by the same symbol ( ).rσ  

Lemma 3.5. Let Vr ,+∈ Q  be a total valuation ring of K. Then the 

following are equivalent: 

(1) ( ) i i( ) ;r V Vσ =  

(2) i( );rx st V∈  

(3) ( ) .)( VVr =σ  

Proof. 

(1) ⇔  (2): This is clear from the definition of ( ).rσ  

(1) ⇒  (3): ( ) ( ) i ( ) i ( ) ( ) i( ) ( ) ( ) .r V r V K r V r K V K Vσ = σ = σ σ = =∩ ∩ ∩  

(3) ⇒  (1): Obviously, ( ) ( )( ) ( ) ( ) i ( ) ( )( ), ( )r J T J T r V r V J Tσ = σ = σ + =  

( ) ( ) ( )( ) ( ) i( ) .r V r J T V J T Vσ + σ = + =  

Lemma 3.6. Let V be a total valuation ring of K. Then 

(1) ( ) i( ) ;st V st V K= ∩  

(2) Let 1−=α fg  be any non-zero element in ( )σ,QK  with += 0af  

01
1 Rxaxa n

n
r

r
r

r ∈++"  and ,0, 000 1
1 =/∈+++= aRxcxccg m

m
s

s
s

s "  

.00 =/c  Then i i1
0 0V a c V−α =  and i i1

0 0 .Va c V− = α  In particular, i( )st Vα ∈  

if and only if 1
0 0 ( ).a c st V− ∈  

Proof. (1) We note that i ( )V V J T= +  and ( ) ( )TJTJ =k  for any 

.0 K∈=/ k  Then ( ) i( ) .st V st V K⊆ ∩  Let i( ) .st V K∈ ∩k  Then 
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( )( ) ( )( ) .kk TJVTJV +=+  Hence .)(, VstVV ∈= kkk  Therefore 
i( ) ( ) .st V st V K= ∩  

(2) Since ( ) ( )TJcaca ∈−α=αϕ −− 1
00

1
00 ,  and so ( )1

0 0 1c a a J T− − ∈  

i( )J V⊆  by Lemma 3.4. Therefore i1
0 0 ( )c a U V− α ∈  and thus 

i i1
0 0 .V a c V−α =  Similarly, we can get i i 1

0 0 .V Va c−α =  

Next we consider the case where V is an invariant valuation ring. 

Proposition 3.7. Let V be an invariant valuation ring of K. Then iV  
is an invariant valuation ring of ( )σ,QK  if and only if ( ) VVr =σ )(  for 

any .+∈ Qr  

Proof. Let 00 RxP r
r>= ∪  and .\0 PRS =  For any ( ),,0 σ∈α=/ QK  

1−=α fgxr  for some Q∈r  and ., Sgf ∈  Hence the statement follows 

from Lemmas 3.2, 3.5, and 3.6. 

The valuation ring iV  can be characterized as a total valuation ring R 
with one of the equivalent properties. 

Theorem 3.8. Let V be a total valuation ring of K and R be a total 
valuation ring of ( )σ,QK  with .VKR =∩  Then the following are 

equivalent: 

(1) i;R V=  

(2) ( )RJaxr ∈  for any Ka ∈  and ;+∈ Qr  

(3) ( )RUaxax n
n r

r
r

r ∈+++ "1
11  for any ., Kar iri ∈∈ +Q  

Proof. 

(1) ⇒  (2): For any ( ) i, , ( ).ra K r x a J T J V+∈ ∈ ∈ ⊆Q  
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(2) ⇒  (3): ( ),RJax i
i r

r ∈  then ( ).1
1 RJaxax n

n r
r

r
r ∈++"  Hence 

( ).1 1
1 RUaxax n

n r
r

r
r ∈+++ "  

(3) ⇒  (1): For any .1)1(,, RaxaxrKa rr ∈−+=∈∈ +Q  We shall 

prove .0 RTxr
r ⊆>∪  Let ,0

1 Txfgx r
r

s
>

− ∈ ∪  where ++= 1
10 r
r axaf  

m
m

n
n t

t
t

t
r

r cxcxcgRax +++=∈+ "" 1
100 ,  with .,00

+∈=/ Qsc  So 

there is 01 Rg ∈  such that 01cgg =  and ( )RUg ∈1  by the assumption. 

Furthermore, there is a non-zero element Vd ∈  such that the constant 

coefficient of 1
0
−dfc  belongs to ,V  so .1

0 Rdfc ∈−  Hence, it follows that 

( .)() 1
1

1
0

11 Rgdfcdxfgx ss ∈= −−−−  Therefore, we proved RTxr
r ⊆>0∪  

and so i .V R⊆  Hence T and R are both i i( , )V V -bimodules, which implies 

that either RT ⊋  or .TR ⊇  The latter case shows that ⊇= KRV ∩  

,KKT =∩  a contradiction. Thus we have .RT ⊋  Assume that i.R V⊋  

Then ( ) i( ) ,K R V V⊇ ϕ ϕ =⊋  since i 1( ).V V−= ϕ  Let VK \∈k  with 

( ) k=αϕ  for some .R∈α  Then ( ) ( )kk −αϕ=−αϕ=0  implies 

.ker 0 RTxr
r ⊆=ϕ∈−α >∪k  Thus ,VKR =∈ ∩k  a contradiction. 

Hence i.R V=  

Corollary 3.9. There are no total valuation rings R of ( )σ,QK  with 

VKR =∩  and either iR V⊋  or i .V R⊋  

Proof. First assume that .VKR =∩  If i ,V R⊇  then ( ) i( )J R J V⊇  

( ).J T⊇  So ( ) iR V J T V⊇ + =  and hence i.R V=  If i,R V⊇  then as in 

the proof of Theorem 3.8, we have ,T R⊋  then ( ) ( ) r
r xTJRJ 0>=⊇ ∪  

KxT r⊇  for any .+∈ Qr  Hence iR V=  by Theorem 3.8. 

Let V be an invariant valuation ring of K and ( ).KU∈k  We write k  

for the image of k  in ( ) ( )./ VUKUV =Γ  For any i {( )st V Uα ∈ = α ∈  
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( )( ) i i}1, | .K V V−σ α α =Q  Let α  denote the image of α  in i i i( )/ ( ).V st V U VΓ =  

Let .\,00 PRSRxP r
r == >∪  Also, let { ,1 SffgA ∈= −  }.Sg ∈      

Note that ( ) AKU ⊆  and ( )( ) ., AxKU r
r QQ ∈=σ ∪  Let 

( ) ( ){ }.VVrrM =σ∈= Q  Obviously, M is an additive subgroup of .Q  

Using these notations, we have: 

Theorem 3.10. Let V be an invariant valuation ring of a skew field 
( )KAutK →σ Q:,  be a group homomorphism.  

(1) If ,Q=M  then i ( )( )( ) ,st V U K= σQ  and i { |rrV Ux∈Γ = ∈∪ Q k k  

( )}K  with ( ) ( ) .rr xrx kk σ=  

(2) If { },0=M  then i( )st V A=  and i .VVΓ = Γ  

(3) If { }0=/M  and ,Q=/M  then i( ) r
r Mst V x A∈= ∪  and 

i { ( )}| .rr MV U Kx∈Γ = ∈∪ k k  

Proof. We note that i( )A st V⊆  by Lemma 3.6, since V is an 

invariant. 

(1) Since i,M V= Q  is invariant by Proposition 3.7. Hence 

( )( )σ= ,)~( QKUVst  and so { ( )}KUxr
rV ∈=Γ ∈ kkQ∪~  by Lemma 3.6. 

(2) Suppose that VxVx rr ~~ =−  for some .0=/r  Then ( ) ( ) ( )rVr σ=σ  

( ) ( )( ) ,~)~()~( VKVKrVrKV ==σσ= ∩∩∩  a contradiction. So )~(Vstxr ∉  

for any .0=/r  Let ( )( ) AKUfgxr \,1 σ∈=α − Q  with ., SgSf ∈∈  

Suppose that ,~~ α=α VV  then rr xVVx ~~ =  by Lemma 3.6, a contradiction. 

Hence AVst =)~(  and so VV Γ=Γ~  by Lemma 3.6. 

Similarly, we can prove (3) as in (2). 
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Let ,0=/r  for any ( ) ( ) ( )kkk rKU σ=∈ ,  if and only if 

( ) ( ) .VrV kk σ=  So the following corollary can be obtained by Theorem 

3.10, which shows the conditions for iVΓ  to be abelian. 

Corollary 3.11. Let V be an invariant valuation ring of a skew field 
( )KAutK →σ Q:,  be a group homomorphism. 

(1) Suppose that .Q=M  Then iVΓ  is abelian if and only if VΓ  is 

abelian and ( ) ( )VrV kk σ=  for every K∈k  and .Q∈r  

(2) Let { }0=/M  and .Q=/M  Then iVΓ  is abelian if and only if VΓ  is 

abelian and ( ) ( )VrV kk σ=  for any K∈k  and .Mr ∈  

We end this paper with one example. 

Example. Let )|( Q∈= ryFK r  be the rational function field over a 

field F in indeterminates ( ).Q∈ryr  Group homomorphism 

( )KAut→σ Q:  is determined by the following: for any 

( ) ( ) aarr =σ∈ ,Q  for all ( ) ( ) srs yyrFa +=σ∈ ,  for any .sy  

(1) Let ( ),1
QZ=G  which is a totally ordered abelian group by 

lexicographical ordering. We define a valuation 1v  of K as follows: 

( ) 01 =av  for any non-zero Fa ∈  and for any non-zero homogeneous 

element ( ) ( ) ( ) Z∈=α<<<=α kksvrrryyy n
s
r

s
r

s
r

n
n 121 ,2

2
1
1

""  with the jr  

component of ( )α1v  is ( )njsj ≤≤1  and the other components of it are 

all zeroes. Let mβ++β+β=β "21  be any element in [ ],| Q∈ryF r  

where iβ  are non-zero homogeneous elements, we define 

( ) ( ){ }.1|min 111 mivv ≤≤β=β  As usual, we can extend the map 1v  to 

{ },0\K  which is a valuation of K. Let 1V  be the valuation ring of K 

determined by .1v  Since ( )tσ  is just shifting and for any ,1 K∈αβ−  
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n
n
s
r

s
r

s
r yyyVV "2

2
1
11

1
1 =αβ−  for some .,,,,,,, 2121 ZQ ∈∈ nn sssrrr ""  

Hence ( ) ( ) 11 VVt =σ  for any .Q∈t  Then 1
~. VM Q=  is invariant by 

Theorem 3.10. ( ) ( ) ,1 101110 VyVyVy =/=σ  so j1VΓ  is not abelian. 

(2) Let .Z=G  A valuation 2v  of K is determined by the following: 

( ) 02 =av  for any non-zero ( ) 1, 2 =∈ ryvFa  for any .Q∈r  Let 2V  be 

the valuation ring of K determined by .2v  Then, it is easily seen that 

Q=M  and ( ) ( ) 22 VVr kk =σ  for any .K∈k  Hence 2
~V  is invariant and 

j2VΓ  is abelian by Theorem 3.10 and Corollary 3.11. 

(3) Let .Z=G  A valuation 3v  of K is determined by the following: 

( ) 03 =av  for any non-zero ( ) 0, 3 =∈ ryvFa  for any ( ) .1,0 03 ==/ yvr  

Let 3V  be the valuation ring of K determined by .3v  For any ,0=/r  

( ) ( ) ( ) ( ) ., 00 yyryyr rr =σ=σ −  Hence { } AVstM == )~(,0 3  and j3
.VVΓ = Γ  

(4) Let .Z=G  A valuation 4v  of K is determined by the following: 

( ) 04 =av  for any non-zero ( ) 0, 4 =∈ ryvFa  for any ( ) 1, 4 =∉ nyvr Z  

for any .Z∈n  Let 4V  be the valuation ring of K determined by .4v  For 

any ( )( ) ,, 0 ryyrr =σ∉ Z  which implies that .Mr ∉  For any 

( ) ( ) ,, sns yynn +=σ∈ Z  which implies that ( ) ( ) .44 VVn =σ  Hence 

.Z=M  For any ( ) ( ) ., 44 VVnn kk =σ∈ Z  Therefore, j4VΓ  is abelian. 
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