# TOTAL VALUATION RINGS IN $K(\mathbb{Q}, \sigma)$

## **GUANGMING XIE, CHUNXIA LIU and ZIFEN HONG**

School of Mathematics and Statistics Guangxi Normal University Guilin, 541006 P. R. China e-mail: gmxie@mailbox.gxnu.edu.cn 2508606349@qq.com 1005124478@qq.com

#### Abstract

Let V be a total valuation ring of a skew field K,  $\mathbb{Q}$  be the additive group of the rational numbers, and Aut(K) be the group of automorphisms of K. Let  $\sigma : \mathbb{Q} \to Aut(K)$  be a group homomorphism,  $K[\mathbb{Q}, \sigma]$  be the skew group ring of  $\mathbb{Q}$  over K, and  $K(\mathbb{Q}, \sigma)$  be its quotient ring. Let  $R_0 = \{\sum a_{r_i} x^{r_i} | a_{r_i} \in K, r_i \in \mathbb{Q}, r_i \ge 0\}$  and  $P = \bigcup_{r>0} x^r R_0$ . Consider the natural map  $\varphi$  from  $R_{0p}$  to K and set  $\widetilde{V} = \varphi^{-1}(V)$ . It is shown that  $\widetilde{V}$  is a total valuation ring of  $K(\mathbb{Q}, \sigma)$ 

2020 Mathematics Subject Classification: 16W50.

Keywords and phrases: total valuation ring, invariant valuation ring, value group. Received June 15, 2024

© 2024 Scientific Advances Publishers

This work is licensed under the Creative Commons Attribution International License (CC BY 3.0).

http://creativecommons.org/licenses/by/3.0/deed.en\_US



### GUANGMING XIE et al.

and it is characterized by  $x^r$  and V. If V is an invariant valuation ring,  $\sigma$  is classified into three types, in order to study the structure of  $\Gamma_{\widetilde{V}}$ (the value group of  $\widetilde{V}$ ).

### 1. Introduction

Let *K* be a skew field and *V* be a total valuation ring of *K*. We assume that  $V \neq K$  throughout this paper. Let  $\sigma : \mathbb{Q} \to Aut(K)$  be a group homomorphism and  $K[\mathbb{Q}, \sigma]$  be the skew group ring of  $\mathbb{Q}$  over *K*. In [7], it was proved that  $K[\mathbb{Q}, \sigma]$  had a quotient skew field  $K(\mathbb{Q}, \sigma)$ . In [1], the authors initiated an investigation of total valuation rings  $K(x, \sigma)$ . It was shown that there were at least two total valuation rings in  $K(x, \sigma)$ . In [2], [5], [8] and [9], extensions of *V* in  $K(x, \sigma)$  had been studied.

Let Q be a simple Artinian ring and  $\sigma$  be an automorphism of Q. Let  $Q[x, \sigma]$  be the skew polynomial ring over Q in an indeterminate x. Then  $Q[x, \sigma]$  has a quotient ring  $Q(x, \sigma)$ . In [6], the authors studied the noncommutative valuation rings in  $Q(x, \sigma)$ . In the case Q is a skew field and V is an invariant valuation ring, in order to study the structure of  $\Gamma_{\widetilde{V}}$ ,  $\sigma$  is classified into five types.

In this paper, we will construct the total valuation ring  $\widetilde{V}$  in  $K(\mathbb{Q}, \sigma)$ . In [10], the authors give a complete classification of graded extensions in  $K(\mathbb{Q}, \sigma)$ .

In [4], Wadsworth defined the  $\Gamma_R$  of a Dubrovin valuation ring R of a simple Artinian ring Q as follows; let  $st(R) = \{q \in U(Q) | qRq^{-1} = R\}$ , the stabilizer of R under the action of U(Q) and  $\Gamma_R = st(R)/U(R)$ . If R is invariant in a skew field Q, then  $\Gamma_R$  coincides with the usual value group of R.

Let *V* be an invariant valuation ring of a skew field *K*, we classify  $\sigma$  into three types and give the complete structure of  $st(\tilde{V})$ .

### 2. Preliminaries

In this section, we collect some notations, definitions and known results. Let *R* be a ring, we denote the Jacobson radical of *R* by J(R) and the units of *R* by U(R). Set  $\mathbb{Q}^+ = \{r \in \mathbb{Q} | r > 0\}$ .

**Definition 2.1** ([3]). Let *K* be a skew field with subring *V*, for any  $a \in K$ , if  $a \notin V$  implies  $a^{-1} \in V$ , then *V* is called a total valuation ring of *K*.

**Definition 2.2** ([3]). Let V be a total valuation ring of a skew field K, we say that V is invariant if  $kVk^{-1} = V$  for any non-zero  $k \in K$ .

**Definition 2.3** ([3]). Let V be an invariant valuation ring of a skew field K,  $\Gamma_V = U(K)/U(V)$  is called the value group of V.

**Definition 2.4** ([4]). Let V be a total valuation ring of a skew field K.  $st(V) = \{k \in U(K) | kVk^{-1} = V\}$  is called the stabilizer of V under the action of U(K).

Set  $R_0 = \{\sum a_{r_i} x^{r_i} | a_{r_i} \in K, r_i \in \mathbb{Q}, r_i \ge 0\}$ . We can easily get the following lemmas.

**Lemma 2.5.** For any  $f_1, f_2, \dots, f_l \in R_0$ , there exists a natural number m, such that  $f_1, f_2, \dots, f_l \in K[x^{\frac{1}{m}}, \sigma(\frac{1}{m})]$ .

**Lemma 2.6.**  $R_0$  is an Ore ring and  $K(\mathbb{Q}, \sigma)$  is its quotient skew field.

## 3. Construction of $\widetilde{V}$

Let K be a skew field and  $\sigma : \mathbb{Q} \to Aut(K)$  be a group homomorphism. Let  $R_0 = \{\sum a_r x^r | a_r \in K, r \in \mathbb{Q}, r \ge 0\}$ . For any  $a \in K$ ,  $r \in \mathbb{Q}^+$ ,  $x^r a = \sigma(r)(a)x^r$ , by Lemma 2.6,  $R_0$  has a quotient ring  $K(\mathbb{Q}, \sigma)$ .

Let  $P = \bigcup_{r>0} x^r R_0$ . Then P is a maximal ideal of  $R_0$ . We can easily prove that P is localizable. Let  $T = R_{0p} = \{fg^{-1} | f \in R_0, g \in R_0 \setminus P\}$  be the localization of  $R_0$  at P. Then T is a total valuation ring of  $K(\mathbb{Q}, \sigma)$ with  $J(T) = \bigcup_{r>0} x^r T$ .

For any  $\alpha = fg^{-1} \in T$ , where  $f = a_0 + a_{r_1}x^{r_1} + \dots + a_{r_n}x^{r_n}$ ,  $g = c_0 + c_{s_1}x^{s_1} + \dots + c_{s_n}x^{s_m}$  with  $c_0 \neq 0$ . We denote the map

$$\varphi: T \to K$$

by  $\varphi(\alpha) = \alpha_0 c_0^{-1}$ . We start with the following lemmas:

**Lemma 3.1.** With the notations above,  $\varphi$  is a ring epimorphism with ker  $\varphi = \bigcup_{r>0} x^r T$ .

**Proof.** By using the Ore condition for  $R_0 \ P$ , it is easy to see that  $\varphi$  is well defined and a ring homomorphism. It is also clear that  $\varphi$  is an epimorphism and ker  $\varphi = \bigcup_{r>0} x^r T$  by the definition of  $\varphi$ .

Let V be a total valuation ring of K. Set  $\widetilde{V} = \varphi^{-1}(V) = V + J(T)$ , the complete inverse image of V by  $\varphi$ .

**Lemma 3.2.**  $\widetilde{V}$  is a total valuation ring of  $K(\mathbb{Q}, \sigma)$ .

**Proof.** For any non-zero  $\alpha \in K(\mathbb{Q}, \sigma)$ , let  $\alpha = fg^{-1}$ ,  $f, g \in R_0$ . We can write  $f = f_1x^r$  and  $g = g_1x^s$  with  $f_1, g_1 \in R_0 \setminus P$  for some  $r, s \ge 0$ . So  $fg^{-1} = f_1x^{r-s}g_1^{-1}$ . If r-s > 0, then  $\alpha \in J(T) \subseteq \widetilde{V}$ . If r-s < 0, then  $\alpha^{-1} \in J(T) \subseteq \widetilde{V}$ . Let r-s = 0 and  $\varphi(\alpha) = a$ . If  $a \in V$ , then  $\alpha \in \widetilde{V}$ . If  $a \notin V$ , then  $a^{-1} \in V$ ,  $\varphi(\alpha^{-1}) = a^{-1} \in V$ , so  $\alpha^{-1} \in \widetilde{V}$ . Hence  $\widetilde{V}$  is a total valuation ring of  $K(\mathbb{Q}, \sigma)$ .

Set  $V^* = V \setminus \{0\}$ . Then we have:

**Lemma 3.3.**  $V^*$  is an Ore set of  $\widetilde{V}$  and  $T = \widetilde{V}V^* = \{\alpha c^{-1} | \alpha \in \widetilde{V}, c \in V^*\}.$ 

**Proof.** For any  $\alpha \in T$ , there exists  $c \in V^*$  with  $\varphi(\alpha)c \in V$ . Then  $\varphi(\alpha c) = \varphi(\alpha) c \in V$ ,  $\alpha c \in \widetilde{V}$ . Set  $\beta = \alpha c$ ,  $\alpha = \beta c^{-1}$ . For any  $\gamma \in \widetilde{V}$ ,  $d \in V^*$ ,  $d^{-1}\gamma \in T$ . Hence there exist  $c \in V^*$  and  $\beta \in \widetilde{V}$  with  $d^{-1}\gamma = \beta c^{-1}$ , i.e.,  $\gamma c = d\beta$ . Therefore,  $V^*$  is a right Ore set of  $\widetilde{V}$ . Similarly, we can prove that  $V^*$  is a left Ore set of  $\widetilde{V}$ . Now it is clear that  $T = \widetilde{V}V^*$ 

Now we consider the Jacobson radical of  $\widetilde{V}\,$  and its residue skew field.

**Lemma 3.4.**  $J(\widetilde{V}) = J(V) + J(T)$  and  $\widetilde{V}/J(\widetilde{V}) \cong V/J(V)$ .

**Proof.** Let I be a maximal right ideal of  $\widetilde{V}$ . Then  $I \supseteq J(T)$ . Furthermore,  $\widetilde{V}/J(T) \cong V$ . Hence  $J(\widetilde{V}) = J(V) + J(T)$  and  $\widetilde{V}/J(\widetilde{V}) \cong V/J(V)$ . Since  $x^r a = \sigma(r)(a)x^r$  for any  $a \in K$ ,  $r \in \mathbb{Q}$ ,  $\sigma(r)$  naturally extends to an automorphism of  $K(\mathbb{Q}, \sigma)$  for any  $r \in \mathbb{Q}$ , which is the conjugation by  $x^r$ . We denote it by the same symbol  $\sigma(r)$ .

**Lemma 3.5.** Let  $r \in \mathbb{Q}^+$ , V be a total valuation ring of K. Then the following are equivalent:

- (1)  $\sigma(r)(\widetilde{V}) = \widetilde{V};$
- (2)  $x^r \in st(\widetilde{V});$
- (3)  $\sigma(r)(V) = V$ .

### Proof.

(1)  $\Leftrightarrow$  (2): This is clear from the definition of  $\sigma(r)$ .

$$(1) \Rightarrow (3): \sigma(r)(V) = \sigma(r)(\widetilde{V} \cap K) = \sigma(r)(\widetilde{V}) \cap \sigma(r)(K) = \widetilde{V} \cap K = V.$$

(3)  $\Rightarrow$  (1): Obviously,  $\sigma(r)(J(T)) = J(T), \sigma(r)(\widetilde{V}) = \sigma(r)(V + J(T)) =$ 

 $\sigma(r)(V) + \sigma(r)(J(T)) = V + J(T) = \widetilde{V}.$ 

Lemma 3.6. Let V be a total valuation ring of K. Then

(1) 
$$st(V) = st(\widetilde{V}) \cap K;$$

(2) Let  $\alpha = fg^{-1}$  be any non-zero element in  $K(\mathbb{Q}, \sigma)$  with  $f = a_0 + a_n x^n + \dots + a_n x^{r_n} \in R_0$  and  $g = c_0 + c_{s_1} x^{s_1} + \dots + c_{s_m} x^{s_m} \in R_0$ ,  $a_0 \neq 0$ ,  $c_0 \neq 0$ . Then  $\alpha \widetilde{V} = a_0 c_0^{-1} \widetilde{V}$  and  $\widetilde{V} a_0 c_0^{-1} = \widetilde{V} \alpha$ . In particular,  $\alpha \in st(\widetilde{V})$  if and only if  $a_0 c_0^{-1} \in st(V)$ .

**Proof.** (1) We note that  $\widetilde{V} = V + J(T)$  and kJ(T) = J(T) for any  $0 \neq k \in K$ . Then  $st(V) \subseteq st(\widetilde{V}) \cap K$ . Let  $k \in st(\widetilde{V}) \cap K$ . Then

k(V + J(T)) = (V + J(T))k. Hence  $kV = Vk, k \in st(V)$ . Therefore  $st(V) = st(\widetilde{V}) \cap K$ .

(2) Since  $\varphi(\alpha) = a_0 c_0^{-1}$ ,  $\alpha - a_0 c_0^{-1} \in J(T)$  and so  $c_0 a_0^{-1} \alpha - 1 \in J(T)$  $\subseteq J(\widetilde{V})$  by Lemma 3.4. Therefore  $c_0 a_0^{-1} \alpha \in U(\widetilde{V})$  and thus  $\alpha \widetilde{V} = a_0 c_0^{-1} \widetilde{V}$ . Similarly, we can get  $\widetilde{V} \alpha = \widetilde{V} a_0 c_0^{-1}$ .

Next we consider the case where V is an invariant valuation ring.

**Proposition 3.7.** Let V be an invariant valuation ring of K. Then  $\tilde{V}$  is an invariant valuation ring of  $K(\mathbb{Q}, \sigma)$  if and only if  $\sigma(r)(V) = V$  for any  $r \in \mathbb{Q}^+$ .

**Proof.** Let  $P = \bigcup_{r>0} x^r R_0$  and  $S = R_0 \setminus P$ . For any  $0 \neq \alpha \in K(\mathbb{Q}, \sigma)$ ,  $\alpha = x^r fg^{-1}$  for some  $r \in \mathbb{Q}$  and  $f, g \in S$ . Hence the statement follows from Lemmas 3.2, 3.5, and 3.6.

The valuation ring  $\widetilde{V}$  can be characterized as a total valuation ring R with one of the equivalent properties.

**Theorem 3.8.** Let V be a total valuation ring of K and R be a total valuation ring of  $K(\mathbb{Q}, \sigma)$  with  $R \cap K = V$ . Then the following are equivalent:

(1)  $R = \widetilde{V};$ 

(2)  $x^r a \in J(R)$  for any  $a \in K$  and  $r \in \mathbb{Q}^+$ ;

(3)  $1 + x^{r_1}a_{r_1} + \dots + x^{r_n}a_{r_n} \in U(R)$  for any  $r_i \in \mathbb{Q}^+$ ,  $a_{r_i} \in K$ .

Proof.

(1)  $\Rightarrow$  (2): For any  $a \in K$ ,  $r \in \mathbb{Q}^+$ ,  $x^r a \in J(T) \subseteq J(\widetilde{V})$ .

(2)  $\Rightarrow$  (3):  $x^{r_i}a_{r_i} \in J(R)$ , then  $x^{r_1}a_{r_1} + \dots + x^{r_n}a_{r_n} \in J(R)$ . Hence  $1 + x^{r_1}a_{r_1} + \dots + x^{r_n}a_{r_n} \in U(R)$ .

(3)  $\Rightarrow$  (1): For any  $a \in K$ ,  $r \in \mathbb{Q}^+$ ,  $x^r a = (1 + x^r a) - 1 \in R$ . We shall prove  $\bigcup_{r>0} x^r T \subseteq R$ . Let  $x^s fg^{-1} \in \bigcup_{r>0} x^r T$ , where  $f = a_0 + x^{n_1} a_{n_1} + \cdots + x^{r_n} a_{r_n} \in R_0$ ,  $g = c_0 + x^{l_1} c_{l_1} + \cdots + x^{l_m} c_{l_m}$  with  $c_0 \neq 0$ ,  $s \in \mathbb{Q}^+$ . So there is  $g_1 \in R_0$  such that  $g = g_1 c_0$  and  $g_1 \in U(R)$  by the assumption. Furthermore, there is a non-zero element  $d \in V$  such that the constant coefficient of  $dfc_0^{-1}$  belongs to V, so  $dfc_0^{-1} \in R$ . Hence, it follows that  $x^s fg^{-1} = (x^s d^{-1}) (dfc_0^{-1})g_1^{-1} \in R$ . Therefore, we proved  $\bigcup_{r>0} x^r T \subseteq R$ and so  $\widetilde{V} \subseteq R$ . Hence T and R are both  $(\widetilde{V}, \widetilde{V})$ -bimodules, which implies that either  $T \supseteq R$  or  $R \supseteq T$ . The latter case shows that  $V = R \cap K \supseteq$  $T \cap K = K$ , a contradiction. Thus we have  $T \supseteq R$ . Assume that  $R \supseteq \widetilde{V}$ . Then  $K \supseteq \varphi(R) \supseteq \varphi(\widetilde{V}) = V$ , since  $\widetilde{V} = \varphi^{-1}(V)$ . Let  $k \in K \setminus V$  with  $\varphi(\alpha) = k$  for some  $\alpha \in R$ . Then  $0 = \varphi(\alpha) - k = \varphi(\alpha - k)$  implies  $\alpha - k \in \ker \varphi = \bigcup_{r>0} x^r T \subseteq R$ . Thus  $k \in R \cap K = V$ , a contradiction. Hence  $R = \widetilde{V}$ .

**Corollary 3.9.** There are no total valuation rings R of  $K(\mathbb{Q}, \sigma)$  with  $R \cap K = V$  and either  $R \supseteq \widetilde{V}$  or  $\widetilde{V} \supseteq R$ .

**Proof.** First assume that  $R \cap K = V$ . If  $\widetilde{V} \supseteq R$ , then  $J(R) \supseteq J(\widetilde{V})$  $\supseteq J(T)$ . So  $R \supseteq V + J(T) = \widetilde{V}$  and hence  $R = \widetilde{V}$ . If  $R \supseteq \widetilde{V}$ , then as in the proof of Theorem 3.8, we have  $T \supseteq R$ , then  $J(R) \supseteq J(T) = \bigcup_{r>0} x^r$  $T \supseteq x^r K$  for any  $r \in \mathbb{Q}^+$ . Hence  $R = \widetilde{V}$  by Theorem 3.8.

Let V be an invariant valuation ring of K and  $k \in U(K)$ . We write  $\overline{k}$ for the image of k in  $\Gamma_V = U(K)/U(V)$ . For any  $\alpha \in st(\widetilde{V}) = \{\alpha \in U\}$   $(K(\mathbb{Q}, \sigma))|\alpha \widetilde{V}\alpha^{-1} = \widetilde{V}\}$ . Let  $\overline{\alpha}$  denote the image of  $\alpha$  in  $\Gamma_{\widetilde{V}} = st(\widetilde{V})/U(\widetilde{V})$ . Let  $P = \bigcup_{r>0} x^r R_0$ ,  $S = R \setminus P$ . Also, let  $A = \{fg^{-1} | f \in S, g \in S\}$ . Note that  $U(K) \subseteq A$  and  $U(K(\mathbb{Q}, \sigma)) = \bigcup_{r \in \mathbb{Q}} x^r A$ . Let  $M = \{r \in \mathbb{Q} | \sigma(r)(V) = V\}$ . Obviously, M is an additive subgroup of  $\mathbb{Q}$ . Using these notations, we have:

**Theorem 3.10.** Let V be an invariant valuation ring of a skew field  $K, \sigma : \mathbb{Q} \to Aut(K)$  be a group homomorphism.

(1) If  $M = \mathbb{Q}$ , then  $st(\widetilde{V}) = U(K(\mathbb{Q}, \sigma))$  and  $\Gamma_{\widetilde{V}} = \bigcup_{r \in \mathbb{Q}} \{\overline{k} \overline{x^r} | k \in U \}$ (K)} with  $\overline{x^r k} = \overline{\sigma(r)(k)x^r}$ .

(2) If  $M = \{0\}$ , then  $st(\widetilde{V}) = A$  and  $\Gamma_{\widetilde{V}} = \Gamma_V$ .

(3) If  $M \neq \{0\}$  and  $M \neq \mathbb{Q}$ , then  $st(\widetilde{V}) = \bigcup_{r \in M} x^r A$  and  $\Gamma_{\widetilde{V}} = \bigcup_{r \in M} \{\overline{kx^r} | k \in U(K) \}.$ 

**Proof.** We note that  $A \subseteq st(\widetilde{V})$  by Lemma 3.6, since V is an invariant.

(1) Since  $M = \mathbb{Q}$ ,  $\widetilde{V}$  is invariant by Proposition 3.7. Hence  $st(\widetilde{V}) = U(K(\mathbb{Q}, \sigma))$  and so  $\Gamma_{\widetilde{V}} = \bigcup_{r \in \mathbb{Q}} \{\overline{kx^r} | k \in U(K)\}$  by Lemma 3.6.

(2) Suppose that  $x^r \widetilde{V} x^{-r} = \widetilde{V}$  for some  $r \neq 0$ . Then  $\sigma(r)(V) = \sigma(r)$  $(\widetilde{V} \cap K) = \sigma(r)(\widetilde{V}) \cap \sigma(r)(K) = \widetilde{V} \cap K = V$ , a contradiction. So  $x^r \notin st(\widetilde{V})$ for any  $r \neq 0$ . Let  $\alpha = x^r fg^{-1} \in U(K(\mathbb{Q}, \sigma)) \setminus A$  with  $f \in S, g \in S$ . Suppose that  $\alpha \widetilde{V} = \widetilde{V} \alpha$ , then  $x^r \widetilde{V} = \widetilde{V} x^r$  by Lemma 3.6, a contradiction. Hence  $st(\widetilde{V}) = A$  and so  $\Gamma_{\widetilde{V}} = \Gamma_V$  by Lemma 3.6.

Similarly, we can prove (3) as in (2).

Let  $r \neq 0$ , for any  $k \in U(K)$ ,  $\overline{k} = \overline{\sigma(r)(k)}$  if and only if  $kV = \sigma(r)(k)V$ . So the following corollary can be obtained by Theorem 3.10, which shows the conditions for  $\Gamma_{\widetilde{V}}$  to be abelian.

**Corollary 3.11.** Let V be an invariant valuation ring of a skew field  $K, \sigma : \mathbb{Q} \to Aut(K)$  be a group homomorphism.

(1) Suppose that  $M = \mathbb{Q}$ . Then  $\Gamma_{\widetilde{V}}$  is abelian if and only if  $\Gamma_V$  is abelian and  $kV = \sigma(r)(k)V$  for every  $k \in K$  and  $r \in \mathbb{Q}$ .

(2) Let  $M \neq \{0\}$  and  $M \neq \mathbb{Q}$ . Then  $\Gamma_{\widetilde{V}}$  is abelian if and only if  $\Gamma_V$  is abelian and  $kV = \sigma(r)(k)V$  for any  $k \in K$  and  $r \in M$ .

We end this paper with one example.

**Example.** Let  $K = F(y_r | r \in \mathbb{Q})$  be the rational function field over a field F in indeterminates  $y_r(r \in \mathbb{Q})$ . Group homomorphism  $\sigma : \mathbb{Q} \to Aut(K)$  is determined by the following: for any  $r \in \mathbb{Q}$ ,  $\sigma(r)(a) = a$  for all  $a \in F$ ,  $\sigma(r)(y_s) = y_{r+s}$  for any  $y_s$ .

(1) Let  $G_1 = \mathbb{Z}^{(\mathbb{Q})}$ , which is a totally ordered abelian group by lexicographical ordering. We define a valuation  $v_1$  of K as follows:  $v_1(a) = 0$  for any non-zero  $a \in F$  and for any non-zero homogeneous element  $\alpha = y_{r_1}^{s_1} y_{r_2}^{s_2} \cdots y_{r_n}^{s_n} (r_1 < r_2 < \cdots < r_n), v_1(\alpha) = (s_k)_{k \in \mathbb{Z}}$  with the  $r_j$ component of  $v_1(\alpha)$  is  $s_j(1 \leq j \leq n)$  and the other components of it are all zeroes. Let  $\beta = \beta_1 + \beta_2 + \cdots + \beta_m$  be any element in  $F[y_r|r \in \mathbb{Q}]$ , where  $\beta_i$  are non-zero homogeneous elements, we define  $v_1(\beta) = \min\{v_1(\beta_1)|1 \leq i \leq m\}$ . As usual, we can extend the map  $v_1$  to  $K \setminus \{0\}$ , which is a valuation of K. Let  $V_1$  be the valuation ring of Kdetermined by  $v_1$ . Since  $\sigma(t)$  is just shifting and for any  $\alpha\beta^{-1} \in K$ ,  $V_1 \alpha \beta^{-1} = V_1 y_{r_1}^{s_1} y_{r_2}^{s_2} \cdots y_{r_n}^{s_n}$  for some  $r_1, r_2, \cdots, r_n \in \mathbb{Q}, s_1, s_2, \cdots, s_n \in \mathbb{Z}$ . Hence  $\sigma(t)(V_1) = V_1$  for any  $t \in \mathbb{Q}$ . Then  $M = \mathbb{Q}$ .  $\widetilde{V}_1$  is invariant by Theorem 3.10.  $\sigma(1)(y_0)V_1 = y_1V_1 \neq y_0V_1$ , so  $\Gamma_{\widetilde{V}_1}$  is not abelian.

(2) Let  $G = \mathbb{Z}$ . A valuation  $v_2$  of K is determined by the following:  $v_2(a) = 0$  for any non-zero  $a \in F$ ,  $v_2(y_r) = 1$  for any  $r \in \mathbb{Q}$ . Let  $V_2$  be the valuation ring of K determined by  $v_2$ . Then, it is easily seen that  $M = \mathbb{Q}$  and  $\sigma(r)(k)V_2 = kV_2$  for any  $k \in K$ . Hence  $\widetilde{V}_2$  is invariant and  $\Gamma_{\widetilde{V}_2}$  is abelian by Theorem 3.10 and Corollary 3.11.

(3) Let  $G = \mathbb{Z}$ . A valuation  $v_3$  of K is determined by the following:  $v_3(a) = 0$  for any non-zero  $a \in F$ ,  $v_3(y_r) = 0$  for any  $r \neq 0$ ,  $v_3(y_0) = 1$ . Let  $V_3$  be the valuation ring of K determined by  $v_3$ . For any  $r \neq 0$ ,  $\sigma(r)(y_0) = y_r$ ,  $\sigma(r)(y_{-r}) = y_0$ . Hence  $M = \{0\}$ ,  $st(\widetilde{V}_3) = A$  and  $\Gamma_{\widetilde{V}_3} = \Gamma_V$ .

(4) Let  $G = \mathbb{Z}$ . A valuation  $v_4$  of K is determined by the following:  $v_4(a) = 0$  for any non-zero  $a \in F$ ,  $v_4(y_r) = 0$  for any  $r \notin \mathbb{Z}$ ,  $v_4(y_n) = 1$ for any  $n \in \mathbb{Z}$ . Let  $V_4$  be the valuation ring of K determined by  $v_4$ . For any  $r \notin \mathbb{Z}$ ,  $\sigma(r)(y_0) = y_r$ , which implies that  $r \notin M$ . For any  $n \in \mathbb{Z}$ ,  $\sigma(n)(y_s) = y_{n+s}$ , which implies that  $\sigma(n)(V_4) = V_4$ . Hence  $M = \mathbb{Z}$ . For any  $n \in \mathbb{Z}$ ,  $\sigma(n)(k)V_4 = kV_4$ . Therefore,  $\Gamma_{\widetilde{V_4}}$  is abelian.

### Acknowledgement

This research is supported by the National Natural Science Foundation of China (11161005) and Guangxi Science Foundation (0991020).

### References

 H. H. Brungs and M. Schöder, Valuation rings in Ore extensions, J. Algebra 235(2) (2001), 665-680.

DOI: https://doi.org/10.1006/jabr.2000.8484

- [2] S. Kobayashi, H. Marubayashi, N. Popescu and C. Vraciu, Total valuation rings of  $K(X, \sigma)$  containing K, Com. Algebra 30(11) (2002), 5535-5546.
- [3] H. Marubayashi, H. Miyamoto and A. Ueda, Noncommutative valuation rings and semi-hereditary orders, K-Monographs in Math.3, Kluwer Academic Publishers, 1997.
- [4] A. R. Wadsworth, Dubrovin valuation rings and Henselization, Math. Ann. 283 (1989), 301-328.

### DOI: https://doi.org/10.1007/BF01446437

- [5] G. Xie, Y. Chen, H. Marubayashi and Y. Wang, A new classification of graded extensions in a skew Laurent polynomial ring, Far East J. Math. Sci. (FJMS) 40(1) (2010), 37-44.
- [6] G. Xie, S. Kobayashi, H. Marubayashi, N. Popescu and C. Vraciu, Noncommutative valuation rings of the quotient Artinian ring of a skew polynomial ring, Algebra. Represent. Theory 8 (2005), 57-68.

DOI: https://doi.org/10.1007/s10468-004-5766-y

- [7] G. Xie, J. Liang and M. Wang, Quotient skew fields of skew group rings of torsion free additive groups over a skew field (to appear in FJMS).
- [8] H. Marubayashi and G. Xie, A classification of graded extensions in a skew Laurent polynomial ring, J. Math. Soc. Japan 60(2) (2008), 423-443.

#### DOI: https://doi.org/10.2969/jmsj/06020423

- [9] H. Marubayashi and G. Xie, A classification of graded extensions in a skew Laurent polynomial ring, II, J. Math. Soc. Japan 61(4) (2009), 1111-1130.
- [10] G. Xie, M. Wang and J. Liang, Graded extensions in  $K[Q, \sigma]$  (Preprint).