Journal of Algebra, Number Theory: Advances and Applications Volume 26, Number 1, 2024, Pages 1-11 Available at http://scientificadvances.co.in DOI: http://dx.doi.org/10.18642/jantaa_7100122303

EXTENSIONS OF TOTAL VALUATION RINGS IN $K(\mathbb{Q}, \sigma)$

GUANGMING XIE, ZIFEN HONG and CHUNXIA LIU

School of Mathematics and Statistics Guangxi Normal University Guilin, 541006 P. R. China e-mail: gmxie@mailbox.gxnu.edu.cn 1005124478@qq.com 2508606349@qq.com

Abstract

Let V be a total valuation ring of a skew field K, \mathbb{Q} be the addictive group of the rational numbers, and Aut(K) be the group of automorphisms of K. Let $\sigma : \mathbb{Q} \to Aut(K)$ be a group homomorphism, $K[\mathbb{Q}, \sigma]$ be the skew group ring of \mathbb{Q} over K and $K(\mathbb{Q}, \sigma)$ be its quotient ring. We consider extensions of V in $K(\mathbb{Q}, \sigma)$. Set $\hat{R} = \{a_0 + a_{r_1}x^{r_1} + \dots + a_{r_k}x^{r_k} | r_i \in \mathbb{Q}^+, a_0 \in V, a_{r_i} \in K\}$ and

2024 Mathematics Subject Classification: 16W50.

Keywords and phrases: total valuation ring, skew group ring, Ore system. Received June 15, 2024

© 2024 Scientific Advances Publishers

This work is licensed under the Creative Commons Attribution International License (CC BY 3.0).

http://creativecommons.org/licenses/by/3.0/deed.en_US

 $\hat{S} = \{1 + a_{r_1}x^{r_1} + \dots + a_{r_k}x^{r_k} | r_i \in \mathbb{Q}^+, a_{r_i} \in K\}. \text{ It is shown that } \hat{S} \text{ is an Ore system in } \hat{R} \text{ and } R_{(1)} = \hat{S}^{-1}\hat{R} \text{ is an extension of } V \text{ in } K(\mathbb{Q}, \sigma).$ Similarly, we can get $R_{(-1)}$, an extension of V in $K(\mathbb{Q}, \sigma)$. Let σ be compatible with V. Set $R = \{\sum a_r x^r | r \ge 0, a_r \in V \text{ for any } r\}$ and $S = \{\sum a_r x^r | r \ge 0, a_r \in V \text{ and at least one } a_r \in U(V)\}. \text{ It is shown that } S \text{ is an Ore system in } R \text{ and } S^{-1}R \text{ is an extension of } V \text{ in } K(\mathbb{Q}, \sigma).$

1. Introduction

Let K be a skew field and V be a total valuation ring of K. We assume that $V \neq K$ throughout this paper. Let $\sigma : \mathbb{Q} \to Aut(K)$ be a group homomorphism and $K[\mathbb{Q}, \sigma]$ be the skew group ring of \mathbb{Q} over K. In [6], it was proved that $K[\mathbb{Q}, \sigma]$ had a quotient skew field $K(\mathbb{Q}, \sigma)$. Let σ be a monomorphism of K. In [2], the authors considered the extensions of Vin $K(x; \sigma, \delta)$. In [1], extensions of V in $K(x, \sigma)$ have been studied. Also, total valuation rings in Ore extensions or in skew polynomial rings have been studied in [3]. Let σ be an automorphism of K. The structure of graded extensions of V was studied in [5], [7], and [8]. \mathbb{Q} is the simplest divisible group. It seems interesting to study the extensions of V in $K(\mathbb{Q}, \sigma)$. In [9], the authors studied the graded extensions of V in $K[\mathbb{Q}, \sigma]$. The aim of this paper is to study the extensions of V in $K(\mathbb{Q}, \sigma)$.

2. Preliminaries

In this section, we collect some notations, definitions and known results.

Definition 2.1 ([2]). Let V be a subring of a skew field K. If for any non-zero $k \in K$, either $k \in V$ or $k^{-1} \in V$, then V is called a total valuation ring of K.

Definition 2.2 ([1]). Let V be a total valuation ring of a skew field K. Let F be a skew field containing K and R be a total valuation ring of F. If $R \cap K = V$, then R is called an extension of V in F.

Definition 2.3 ([4]). Let R be a ring with no divisor and S be a multiplicatively closed subset of R. If for any $a \in R$, $c \in S$, there exist $b \in R$, $d \in S$ such that da = bc, then S is called a left Ore system. Similarly, we can define a right Ore system. If S is both left Ore system and right Ore system, then S is called an Ore system.

Theorem 2.4 ([4]). *S* is a left (right) Ore system if and only if the left (right) quotient ring $S^{-1}R(RS^{-1})$ exists.

Let $\sigma : \mathbb{Q} \to Aut(K)$ be a group homomorphism. Then $K[\mathbb{Q}, \sigma] = \{\sum a_{r_i} x^{r_i} | a_{r_i} \in K, r_i \in \mathbb{Q}\}$ with $x^{r_i} a = \sigma(r_i)(a) x^{r_i}$ for any $a \in K$. Let R be a ring. We denote the Jacobson radical of R by J(R) and the units of R by U(R). Set

$$\hat{R} = \{a_0 + a_{r_1} x^{r_1} + \dots + a_{r_k} x^{r_k} | r_i > 0, a_0 \in V, a_{r_i} \in K \text{ for any } i\},\$$

 and

$$\hat{S} = \{1 + a_{r_1} x^{r_1} + \dots + a_{r_k} x^{r_k} | r_i > 0, a_{r_i} \in K \text{ for any } i\}.$$

We can easily get the following lemma by [1].

Lemma 2.5 ([1]). For any t > 0, set $\hat{R}_t = \{a_0 + a_1x^t + \dots + a_nx^{nt} | a_0 \in V, a_i \in K \text{ for any } i\}$ and $\hat{S}_t = \{1 + a_1x^t + \dots + a_nx^{nt} | a_i \in K \text{ for any } i\}$. Then \hat{S}_t is an Ore system in \hat{R}_t and $\hat{S}_t^{-1}\hat{R}_t$ is a total valuation ring of $K(x^t, \sigma(t))$. **Definition 2.6.** Let *K* be a skew field and *V* be a total valuation ring of *K*. Let $\sigma : \mathbb{Q} \to Aut(K)$ be a group homomorphism. We say that σ is compatible with *V* if for any $r \in \mathbb{Q}$ and $a \in K$, $\sigma(r)(a) \in V$ if and only if $a \in V$.

Lemma 2.7 ([2]). For any t > 0, set $R_t = \{\sum_{i=0}^n a_i x^{ti} | a_i \in V \text{ for any } i\}$ and $S_t = \{\sum_{i=0}^n a_i x^{ti} | a_i \in V \text{ and at least one } a_j \in U(V)\}$. Assume that σ is compatible with V. Then S_t is an Ore system in R_t and $S_t^{-1}\hat{R}_t$ is a total valuation ring of $K(x^t, \sigma(t))$.

It is easy to get the following lemma.

Lemma 2.8. For any $f_1, f_2, \dots, f_l \in R_0 = \{\sum_{i=1}^n a_{r_i} x^{r_i} | r_i \ge 0, a_{r_i} \in K\},$ there exists a natural number m such that $f_1, f_2, \dots, f_l \in K[x^{\frac{1}{m}}, \sigma(\frac{1}{m})].$

Proof. Let $f_1 = a_{r_1}x^{r_1} + \dots + a_{r_k}x^{r_k}$. Assume that $r_i = \frac{s_i}{n_i}, s_i \in \mathbb{Z}$, $n_i \in \mathbb{N}$ for any *i*. Let $m_1 = n_1n_2 \cdots n_k$. Then $f_1 \in K[x^{\frac{1}{m_1}}, \sigma(\frac{1}{m_1})]$. Similarly, we can get m_2, \dots, m_l , such that $f_i \in K[x^{\frac{1}{m_i}}, \sigma(\frac{1}{m_i})], i = 2, \dots, l$. Set $m = m_1m_2 \cdots m_l$. Then $f_i \in K[x^{\frac{1}{m}}, \sigma(\frac{1}{m})]$ for all *i*.

The following lemma is obtained in [6], we give a proof for reader's convenience.

Lemma 2.9 ([6]). R_0 is an Ore ring and $K(\mathbb{Q}, \sigma)$ is its quotient skew field.

Proof. For any $f \in R_0$, $g \in R_0 \setminus \{0\}$, there exists an $m \in \mathbb{N}$ such that $f, g \in K[x^{\frac{1}{m}}, \sigma(\frac{1}{m})]$. Since $K[x^{\frac{1}{m}}, \sigma(\frac{1}{m})]$ is an Ore ring, there exist

 $f_1, f_2 \in K[x^{\frac{1}{m}}, \sigma(\frac{1}{m})]$ and $g_1, g_2 \in K[x^{\frac{1}{m}}, \sigma(\frac{1}{m})] \setminus \{0\}$, such that $g_1 f = f_1 g, fg_2 = gf_2$. Hence R_0 is an Ore ring. If $\alpha = g^{-1} f \in K(\mathbb{Q}, \sigma)$, then $\alpha \in K(x^{\frac{1}{m}}, \sigma(\frac{1}{m}))$. Hence $K(\mathbb{Q}, \sigma)$ is the quotient skew field of R_0 .

3. Extensions of *V* in $K(\mathbb{Q}, \sigma)$

Let $\sigma : \mathbb{Q} \to Aut(K)$ be a group homomorphism. In this section, we will study the extensions of V in $K(\mathbb{Q}, \sigma)$. Let $\mathbb{Q}^+ = \{r \in \mathbb{Q} | r > 0\}$ and $\mathbb{Q}^- = \{r \in \mathbb{Q} | r < 0\}$. Set $\hat{R} = \{a_0 + a_n x^n + \dots + a_n x^{r_k} | r_i \in \mathbb{Q}^+, a_0 \in V,$ $a_{r_i} \in K$ for any $i\}$. It is a subring of $K[\mathbb{Q}, \sigma]$. Set $\hat{S} = \{1 + a_n x^n + \dots + a_n x^{r_k} | r_i \in \mathbb{Q}^+, a_{r_i} \in K$ for any $i\}$. We will show that \hat{S} is an Ore system in \hat{R} and $\hat{S}^{-1}\hat{R}$ is a total valuation ring of $K(\mathbb{Q}, \sigma)$.

Theorem 3.1. Let V be a total valuation ring of a skew field K. Then V has at least the following two standard extensions $R_{(1)}$ and $R_{(-1)}$ in $K(\mathbb{Q}, \sigma)$. The valuation ring $R_{(1)}$ of $K(\mathbb{Q}, \sigma)$ with the property that $ax^r \in J(R_{(1)})$ for all $a \in K, r \in \mathbb{Q}^+$. The valuation ring $R_{(-1)}$ of $K(\mathbb{Q}, \sigma)$ with the property that $ax^r \in J(R_{(-1)})$ for all $a \in K, r \in \mathbb{Q}^-$.

Proof. Set $\hat{S} = \{1 + a_{r_1}x^{r_1} + \dots + a_{r_k}x^{r_k} | r_i \in \mathbb{Q}^+, a_{r_i} \in K \text{ for any } i\}.$ It is trivial that \hat{S} is a multiplicatively closed set. Let $f \in \hat{R}$ and $g \in \hat{S}.$ Then there exists an $n \in \mathbb{N}$ such that $f, g \in K[x^{\frac{1}{n}}, \sigma(\frac{1}{n})]$ by Lemma 2.8. Let $\hat{R}_{\frac{1}{n}} = \{a_0 + a_1x^{\frac{1}{n}} + \dots + a_sx^{\frac{s}{n}} | a_0 \in V, a_i \in K \text{ for any } i\}, \hat{S}_{\frac{1}{n}} =$ $\{1 + b_1 x^{\frac{1}{n}} + \dots + b_l x^{\frac{l}{n}} | b_i \in K \text{ for any } i\}$. By Lemma 2.5, $\hat{S}_{\frac{1}{n}}$ is an Ore system in $\hat{R}_{\frac{1}{n}}$. Hence there exist $f_1, f_2 \in \hat{R}_{\frac{1}{n}}, g_1, g_2 \in \hat{S}_{\frac{1}{n}}$, such that $g_1 f = f_1 g, fg_2 = gf_2, \hat{R}_{\frac{1}{n}} \subseteq \hat{R}$ and $\hat{S}_{\frac{1}{n}} \subseteq \hat{S}$. Therefore \hat{S} is an Ore system.

For any $\alpha \in K(\mathbb{Q}, \sigma)$, let $\alpha = g^{-1}f$, $f \in \hat{R}_0$, $g \in \hat{R}_0 \setminus \{0\}$. Then there exists an $n \in \mathbb{N}$ such that $f, g \in K[x^{\frac{1}{n}}, \sigma(\frac{1}{n})]$. Then $\alpha \in K(x^{\frac{1}{n}}, \sigma(\frac{1}{n}))$. By Lemma 2.5, $\hat{S}_{\frac{1}{n}}^{-1}\hat{R}_{\frac{1}{n}}$ is a total valuation ring of $K(x^{\frac{1}{n}}, \sigma(\frac{1}{n}))$, either $\alpha \in \hat{S}_{\frac{1}{n}}^{-1}\hat{R}_{\frac{1}{n}}$ or $\alpha^{-1} \in \hat{S}_{\frac{1}{n}}^{-1}\hat{R}_{\frac{1}{n}}$. We note that $\hat{S}_{\frac{1}{n}}^{-1}\hat{R}_{\frac{1}{n}} \subseteq \hat{S}^{-1}\hat{R}$. Hence $\hat{S}^{-1}\hat{R}$ is a valuation ring. If $\alpha \in \hat{S}^{-1}\hat{R} \cap K$, then $\alpha \in \hat{S}_{\frac{1}{n}}^{-1}\hat{R}_{\frac{1}{n}} \cap K = V$. Therefore, $\hat{S}^{-1}\hat{R}$ is an extension of V in $K(\mathbb{Q}, \sigma)$. We denote it by $R_{(1)}$. The construction of $R_{(1)}$ implies that $\alpha x^r \in J(R_{(1)})$ for all $\alpha \in K$ and $r \in \mathbb{Q}^+$.

Conversely, let R be any extension of V in $K(\mathbb{Q}, \sigma)$ with $ax^r \in J(R)$ for all $a \in K$ and $r \in \mathbb{Q}^+$. It follows that all expressions of the form $1 + a_n x^{r_1} + \dots + a_{r_k} x^{r_k}$ with $r_i \in \mathbb{Q}^+$ are units in R. Since $\hat{R} \subseteq R, R_{(1)} \subseteq R$. For any non-zero element $\alpha = g^{-1}f \in K(\mathbb{Q}, \sigma), \quad f, g \in R_0 = \{\sum a_{r_i} x^{r_i} | a_{r_i} \in K, r_i \ge 0\}.$ Let $f = a_n x^{r_1} + a_{r_2} x^{r_2} + \dots + a_n x^{r_k}$ with $r_1 < r_2 < \dots < r_t$ and $g = b_{s_1} x^{s_1} + b_{s_2} x^{s_2} + \dots + b_{s_l} x^{s_l}$ with $s_1 < s_2 < \dots < s_l$. We have the equation

$$f = a_n x^{n_1} (1 + \sigma(-r_1) (a_n^{-1} a_{r_2}) x^{r_2 - r_1} + \dots + \sigma(-r_1) (a_n^{-1} a_n) x^{r_1 - r_1})$$
$$= a_n x^{n_1} f_1,$$

and

$$g = b_{s_1} x^{s_1} (1 + \sigma(-s_1) (b_{s_1}^{-1} b_{s_2}) x^{s_2 - s_1} + \dots + \sigma(-s_1) (b_{s_1}^{-1} b_{s_l}) x^{s_l - s_1})$$
$$= b_{s_1} x^{s_1} g_1,$$

with $f_1, g_1 \in \hat{S}$. Then $g^{-1}f = g_1^{-1}\sigma(-s_1)(b_{s_1}^{-1}a_{r_1})x^{r_1-s_1}f_1$. If $\alpha \in R$, then $r_1 - s_1 > 0$ or $r_1 = s_1$ and $\sigma(-s_1)(b_{s_1}^{-1}a_{r_1}) \in V$, i.e., $\alpha \in R_{(1)}$. Hence $R = R_{(1)}$.

Let $\hat{R}_{(-1)} = \{a_0 + a_n x^n + \dots + a_{r_k} x^{r_k} | r_i \in \mathbb{Q}^-, a_0 \in V, a_{r_i} \in K \text{ for any } i\}$ and $\hat{S}_{(-1)} = \{1 + a_n x^n + \dots + a_{r_k} x^{r_k} | r_i \in \mathbb{Q}^-, a_{r_i} \in K \text{ for any } i\}$. Similarly, we can get that $R_{(-1)} = \hat{S}_{(-1)}^{-1} \hat{R}_{(-1)}$ is an extension of V in $K(\mathbb{Q}, \sigma)$ with the property that $ax^r \in J(R_{(-1)})$ for all $a \in K$ and $r \in \mathbb{Q}^-$.

Theorem 3.2 Let σ be compatible with V. Then we have the following:

(1) Set $R = \{\sum a_r x^r | r \ge 0, a_r \in V\}$ and $S = \{\sum a_r x^r \in R | at least one a_r \in U(V)\}$. S is an Ore system in R.

(2) $S^{-1}R$ is an extension of V in $K(\mathbb{Q}, \sigma)$.

Proof. (1) For any $f \in R$ and $g \in S$, there is an $n \in \mathbb{N}$ with $f, g \in K[x^{\frac{1}{n}}, \sigma(\frac{1}{n})]$ by Lemma 2.8. Let $R_{\frac{1}{n}} = \{\sum_{i=0}^{l} a_i x^{\frac{i}{n}} | a_i \in V\}$ and

$$\begin{split} S_{\frac{1}{n}} &= \{\sum_{i=0}^{l} a_{i} x^{\frac{1}{n}} | a_{i} \in V \text{ and at least one } a_{i} \in U(V) \}. \text{ By Lemma 2.7,} \\ S_{\frac{1}{n}} \text{ is an Ore system in } R_{\frac{1}{n}}. \text{ Then there exist } f_{1}, f_{2} \in R_{\frac{1}{n}} \text{ and} \\ g_{1}, g_{2} \in S_{\frac{1}{n}} \text{ such that } g_{1}f = f_{1}g, fg_{2} = gf_{2}. \text{ Since } R_{\frac{1}{n}} \subseteq R, S_{\frac{1}{n}} \subseteq S. \\ \text{Hence } S \text{ is an Ore system in } R. \end{split}$$

(2) For any $\alpha = g^{-1}f \in K(\mathbb{Q}, \sigma)$ with $f \in R_0, g \in R_0 \setminus \{0\}$, there exists an $n \in \mathbb{N}$ with $f, g \in K[x^{\frac{1}{n}}, \sigma(\frac{1}{n})]$ by Lemma 2.8. Then $\alpha \in K(x^{\frac{1}{n}}, \sigma(\frac{1}{n}))$, Since $S_{\frac{1}{n}}^{-1}R_{\frac{1}{n}}$ is a total valuation ring by Lemma 2.7, either $\alpha \in S_{\frac{1}{n}}^{-1}R_{\frac{1}{n}}$ or $\alpha^{-1} \in S_{\frac{1}{n}}^{-1}R_{\frac{1}{n}}$. We note that $S_{\frac{1}{n}}^{-1}R_{\frac{1}{n}} \subseteq S^{-1}R$. Hence $S^{-1}R$ is a total valuation ring of $K(\mathbb{Q}, \sigma)$. If $\alpha \in S^{-1}R \cap K$, then $\alpha \in S_{\frac{1}{n}}^{-1}R_{\frac{1}{n}} \cap K = V$. Hence $S^{-1}R$ is an extension of V in $K(\mathbb{Q}, \sigma)$. \Box

We denote $S^{-1}R$ by $V_{(1)}$. Set

$$A^+ = \{ \sum a_r x^r | r \in \mathbb{Q}, a_r \in J(V) \text{ if } r < 0 \text{ and } a_r \in V \text{ if } r \ge 0 \},\$$

and

$$S_{(1)}^{+} = \{ \sum a_r x^r | r \in \mathbb{Q}, a_r \in J(V) \text{ if } r < 0, a_0 \in U(V), a_r \in V \text{ if } r > 0 \}.$$

Using the result of [7], similar to the proof of Theorem 3.2, we can prove that $S_{(1)}^+$ is an Ore system of A^+ and $V_{(1)}^+ = (S_{(1)}^+)^{-1}A^+$ is an extension of V in $K(\mathbb{Q}, \sigma)$. Set

$$A^{-} = \{ \sum a_r x^r | r \in \mathbb{Q}, a_r \in J(V) \text{ if } r > 0 \text{ and } a_r \in V \text{ if } r \le 0 \},\$$

and

$$S_{(1)}^{-} = \{ \sum a_r x^r | r \in \mathbb{Q}, a_r \in J(V) \text{ if } r > 0, a_0 \in U(V), a_r \in V \text{ if } r < 0 \}.$$

Similarly, we can prove that $S_{(1)}^-$ is an Ore system of A^- and $V_{(1)}^- = (S_{(1)}^-)^{-1}A^-$ is an extension of V in $K(\mathbb{Q}, \sigma)$. The above result can be found in [9].

Corollary 3.3 ([9]). Let σ be compatible with V. With the above notations, $V_{(1)}^+$ and $V_{(1)}^-$ are extensions of V in $K(\mathbb{Q}, \sigma)$. Furthermore, $V_{(1)}^+ \subset V_{(1)}$ and $V_{(1)}^- \subset V_{(1)}$.

It follows from the next result that an extension R of V exists in $K(\mathbb{Q}, \sigma)$ that contains x^r for all $r \in \mathbb{Q}$ if and only if σ is compatible with V.

Theorem 3.4. There exists an extension R of V in $K(\mathbb{Q}, \sigma)$ with $x^r \in U(R)$ for all $r \in \mathbb{Q}$ if and only if σ is compatible with V.

Proof. Assume that R is an extension of V in $K(\mathbb{Q}, \sigma)$ with $x^r \in U(R)$ for all $r \in \mathbb{Q}$. We have $x^r a = \sigma(r)(a)x^r$ for all $a \in K$. Hence $a \in U(R)$ if and only if $\sigma(r)(a) \in U(R)$. Therefore, $a \in U(V)$ if and only if $\sigma(r)(a) \in U(V)$. It implies that σ is compatible with V. Conversely, if σ is compatible with V, then $S^{-1}R$ is an extension of V in $K(\mathbb{Q}, \sigma)$ with $x^r \in U(R)$ for all $r \in \mathbb{Q}$ by Theorem 3.2.

4. Example

In this section, we will provide a concrete example of $K(\mathbb{Q}, \sigma)$ that σ is compatible with *V*.

Example Let $K = F(y_r | r \in \mathbb{Q})$ be the rational function field over a field F in indeterminates $y_r(r \in \mathbb{Q})$. Let $\sigma : \mathbb{Q} \to Aut(K)$ be a group

homomorphism defined by the following; for any $r \in \mathbb{Q}$, $\sigma(r)(a) = a$ for all $a \in F$, $\sigma(r)(y_s) = y_{r+s}$ for any y_s . Let $G = \mathbb{Z}^{(\mathbb{Q})}$ which is a totally ordered abelian group by lexicographical ordering. We define a valuation v of K as follows: v(a) = 0 for any non-zero $a \in F$ and for any non-zero homogeneous element $\alpha = y_{r_1}^{s_1} y_{r_2}^{s_2} \cdots y_{r_n}^{s_n} (r_1 < r_2 < \cdots r_2 < r_n), v(\alpha) = (s_k)_{(k \in \mathbb{Z})}$, where $(s_k)_{(k \in \mathbb{Z})}$ is the element in G such that the r_j -component of $v(\alpha)$ is $s_j(1 \leq j \leq n)$ and other components of it are all zeroes. Let $\beta = \beta_1 + \beta_2 + \cdots + \beta_m$ be any element in $F[y_r | r \in \mathbb{Q}]$, where β_i are non-zero homogeneous elements, we define $v(\beta) = \min\{v(\beta_i)|1 \leq i \leq m\}$. As usual, we can extend the map v to $K \setminus \{0\}$. Let V be the valuation ring determined by v. Since $\sigma(t)$ is just shifting and for any $\alpha\beta^{-1} \in K$, $V\alpha\beta^{-1} = Vy_{r_1}^{s_1}y_{r_2}^{s_2} \cdots y_{r_n}^{s_n}$ for some $r_1, r_2, \cdots, r_n \in \mathbb{Q}, s_1, s_2, \cdots, s_n \in \mathbb{Z}$. Hence σ is compatible with V. Therefore, $R_{(1)}, R_{(-1)}, V_{(1)}, V_{(1)}^+$, and $V_{(1)}^-$ are extensions of V in $K(\mathbb{Q}, \sigma)$.

Acknowledgements

This research is supported by the National Natural Science Foundation of China (11161005) and Guangxi Science Foundation (0991020).

References

 H. H. Brungs and M. Schröder, Valuation rings in Ore extensions, J. Algebra 235(2) (2001), 665-680.

DOI: https://doi.org/10.1006/jabr.2000.8484

H. H. Brungs and G. Törner, Extensions of chain Ring, Math. Z. 185 (1984), 93-104.
DOI: https://doi.org/10.1007/BF01214974

[3] H. Marubayashi, H. Miyamoto and A. Ueda, Non-commutative valuation rings and semi-hereditary orders, K-Monographs in Math.3, Kluwer Academic Publishers 1997.

DOI: https://doi.org/10.1007/978-94-017-2436-4

[4] O. Ore, Linear equations in non-commutative fields, Ann. of Math. 32(3) (1931), 463-477.

DOI: https://doi.org/10.2307/1968245

- [5] G. Xie, Y. Chen, H. Marubayashi and Y. Wang, A new classification of graded extensions in a skew Laurent polynomial ring, Far East J. Math. Sci. 40(1) (2010), 37-44.
- [6] G. Xie, J. Liang and M. Wang, Quotient skew fields of skew group rings of torsion free addictive groups over a skew field (to appear in FJMS).
- [7] H. Marubayashi and G. Xie, A classification of graded extensions in a skew Laurent polynomial ring, J. Math. Soc. Japan 60(2) (2008), 423-443.

DOI: https://doi.org/10.2969/jmsj/06020423

[8] H. Marubayashi and G. Xie, A classification of graded extensions in a skew Laurent polynomial ring, II, J. Math. Soc. Japan 61(4) (2009), 1111-1130.

DOI: https://doi.org/10.2969/jmsj/06141111

[9] G. Xie, M. Wang and J. Liang, Graded extensions in $K[\mathbb{Q}, \sigma]$, (preprint).