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Abstract 

Let V be a total valuation ring of a skew field Q,K  be the addictive 

group of the rational numbers, and ( )KAut  be the group of 

automorphisms of .K  Let ( )KAut→σ Q:  be a group     

homomorphism, [ ]σ,QK  be the skew group ring of Q  over K  and 

( )σ,QK  be its quotient ring. We consider extensions of V  in ( ) ., σQK  

Set { ,,ˆ 00 1
1 VarxaxaaR i

r
r

r
r ∈∈+++= +Qk

k" }Ka ir ∈  and 
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{ }.,1ˆ 1
1 KarxaxaS iri

r
r

r
r ∈∈+++= +Qk

k"  It is shown that Ŝ  is 

an Ore system in R̂  and ( ) RSR ˆˆ 1
1

−=  is an extension of V in ( ) ., σQK  

Similarly, we can get ( ) ,1−R  an extension of V in ( ) ., σQK  Let σ  be 

compatible with V. Set { VarxaR r
r

r ∈≥= ∑ ,0  for any }r  and 

{ VarxaS r
r

r ∈≥= ∑ ,0  and at least one ( )}.VUar ∈  It is shown 

that S  is an Ore system in R and RS 1−  is an extension of V in 

( ) ., σQK  

1. Introduction 

Let K be a skew field and V be a total valuation ring of K. We assume 
that KV =/  throughout this paper. Let ( )KAut→σ Q:  be a group 

homomorphism and [ ]σ,QK  be the skew group ring of Q  over .K  In [6], 

it was proved that [ ]σ,QK  had a quotient skew field ( )., σQK  Let σ  be 

a monomorphism of .K  In [2], the authors considered the extensions of V 

in ( ).,; δσxK  In [1], extensions of V in ( )σ,xK  have been studied. Also, 

total valuation rings in Ore extensions or in skew polynomial rings have 
been studied in [3]. Let σ  be an automorphism of .K  The structure of 
graded extensions of V  was studied in [5], [7], and [8]. Q  is the simplest 

divisible group. It seems interesting to study the extensions of V  in 
( )., σQK  In [9], the authors studied the graded extensions of V  in 

[ ]., σQK  The aim of this paper is to study the extensions of V  in 

( )., σQK  

2. Preliminaries 

In this section, we collect some notations, definitions and known 
results. 
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Definition 2.1 ([2]). Let V be a subring of a skew field K. If for any 

non-zero ,K∈k  either V∈k  or ,1 V∈−k  then V is called a total 

valuation ring of K. 

Definition 2.2 ([1]). Let V be a total valuation ring of a skew field K. 
Let F be a skew field containing K and R be a total valuation ring of F.     
If ,VKR =∩  then R is called an extension of V in F. 

Definition 2.3 ([4]). Let R be a ring with no divisor and S be a 
multiplicatively closed subset of R. If for any ,, ScRa ∈∈  there exist 

SdRb ∈∈ ,  such that ,bcda =  then S is called a left Ore system. 

Similarly, we can define a right Ore system. If S is both left Ore system 
and right Ore system, then S is called an Ore system. 

Theorem 2.4 ([4]). S is a left (right) Ore system if and only if the left 

(right) quotient ring ( )11 −− RSRS  exists. 

Let ( )KAut→σ Q:  be a group homomorphism. Then [ ] {∑=σ,QK  

}Q∈∈ ir
r

r rKaxa i
i

i ,  with ( ) ( ) ii r
i

r xarax σ=  for any .Ka ∈  Let R be a 

ring. We denote the Jacobson radical of R by ( )RJ  and the units of R by 

( ).RU  Set 

{ KaVarxaxaaR iri
r

r
r

r ∈∈>+++= ,,0ˆ 00 1
1

k
k

"  for any },i  

and 

{ KarxaxaS iri
r

r
r

r ∈>+++= ,01ˆ 1
1

k
k

"  for any }.i  

We can easily get the following lemma by [1]. 

Lemma 2.5 ([1]). For any ,0>t  set { 010ˆ axaxaaR nt
n

t
t +++= "  

KaV i ∈∈ ,  for any }i  and { KaxaxaS i
nt

n
t

t ∈+++= "11ˆ  for any }.i  

Then tŜ  is an Ore system in tR̂  and tt RS ˆˆ 1−  is a total valuation ring of 

( ( ))., txK t σ  
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Definition 2.6. Let K be a skew field and V be a total valuation ring 
of K. Let ( )KAut→σ Q:  be a group homomorphism. We say that σ  is 

compatible with V if for any Q∈r  and ( )( ) VarKa ∈σ∈ ,  if and only if 

.Va ∈  

Lemma 2.7 ([2]). For any ,0>t  set { VaxaR i
ti

i
n
it ∈= ∑ =0  for any }i  

and { VaxaS i
ti

i
n
it ∈= ∑ =0  and at least one ( )}.VUa j ∈  Assume that σ  

is compatible with .V  Then tS  is an Ore system in tR  and tt RS ˆ1−  is a 

total valuation ring of ( ( ))., txK t σ  

It is easy to get the following lemma. 

Lemma 2.8. For any { },,0,,, 1021 KarxaRfff i
i

i ri
r

r
n
il ∈≥=∈ ∑ =

"  

there exists a natural number m such that [ ( ) ].,,,, 1
21

1

ml mxKfff σ∈"  

Proof. Let .1
11 k

k
r

r
r

r xaxaf ++= "  Assume that ,, Z∈= in
s

i sr
i
i  

N∈in  for any i. Let .211 knnnm "=  Then ( )].,[
1

1
1

1
1 m

mxKf σ∈  Similarly, 

we can get ,,,2 lmm "  such that ( )] .,,2,,[ 1
1

lixKf
i

mi
mi "=σ∈  Set 

.21 lmmmm "=  Then ( )]mi mxKf 1,[
1

σ∈  for all .i    

The following lemma is obtained in [6], we give a proof for reader’s 
convenience. 

Lemma 2.9 ([6]). 0R  is an Ore ring and ( )σ,QK  is its quotient skew 

field. 

Proof. For any { },0\, 00 RgRf ∈∈  there exists an N∈m  such 

that ( )].,[, 1
1

m
mxKgf σ∈  Since ( )]m

mxK 1,[
1

σ  is an Ore ring, there exist 
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( )]m
mxKff 1

21 ,[,
1

σ∈  and ( )] { },0\,[, 1
21

1

m
mxKgg σ∈  such that 

., 2211 gffggffg ==  Hence 0R  is an Ore ring. If ( ),,1 σ∈=α − QKfg  

then ( )).,( 1
1

m
mxK σ∈α  Hence ( )σ,QK  is the quotient skew field of .0R   

 

3. Extensions of V in ( )σ,QK  

Let ( )KAut→σ Q:  be a group homomorphism. In this section, we 

will study the extensions of V in ( )., σQK  Let { }0>∈=+ rr QQ  and 

{ }.0<∈=− rr QQ  Set { ,,ˆ 00 1
1 VarxaxaaR i

r
r

r
r ∈∈+++= +Qk

k
"  

Ka ir ∈  for any }.i  It is a subring of [ ]., σQK  Set { +++= "1
11ˆ r
r xaS  

Karxa iri
r

r ∈∈ + ,Qk
k

 for any }.i  We will show that Ŝ  is an Ore 

system in R̂  and RS ˆˆ 1−  is a total valuation ring of ( )., σQK  

Theorem 3.1. Let V be a total valuation ring of a skew field K. Then 
V has at least the following two standard extensions ( )1R  and ( )1−R  in 

( )., σQK  The valuation ring ( )1R  of ( )σ,QK  with the property that 

( ( ) )1RJaxr ∈  for all ., +∈∈ QrKa  The valuation ring ( )1−R  of 

( )σ,QK  with the property that ( ( ) )1−∈ RJaxr  for all ., −∈∈ QrKa  

Proof. Set { KarxaxaS iri
r

r
r

r ∈∈+++= + ,1ˆ 1
1 Qk

k
"  for any }.i  

It is trivial that Ŝ  is a multiplicatively closed set. Let Rf ˆ∈  and .Ŝg ∈  

Then there exists an N∈n  such that ( )]n
nxKgf 1,[,
1

σ∈  by Lemma 2.8. 

Let { KaVaxaxaaR is n
s

n
n

∈∈+++= ,ˆ 010
1

1 "  for any } =
n

Si 1ˆ,  
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{ Kbxbxb il n
l

n ∈+++ "
1

11  for any }.i  By Lemma 2.5, 
n

S1ˆ  is an Ore 

system in .ˆ 1
n

R  Hence there exist ,ˆ,,ˆ, 11 2121
nn

SggRff ∈∈  such that 

RRgffggffg
n

ˆˆ,, 12211 ⊆==  and .ˆˆ 1 SS
n
⊆  Therefore Ŝ  is an Ore 

system. 

For any ( ),, σ∈α QK  let { }.0\ˆ,ˆ, 00
1 RgRffg ∈∈=α −  Then there 

exists an N∈n  such that ( )].,[, 1
1

n
nxKgf σ∈  Then ( )).,( 1

1

n
nxK σ∈α  

By Lemma 2.5, 
nn

RS 11
ˆˆ 1−  is a total valuation ring of ( )),,( 1

1

n
nxK σ  either 

nn
RS 11
ˆˆ 1−∈α  or .ˆˆ 11

11
nn

RS−− ∈α  We note that .ˆˆˆˆ 11
11 RSRS
nn

−− ⊆  Hence 

RS ˆˆ 1−  is a valuation ring. If ,ˆˆ 1 KRS ∩−∈α  then .ˆˆ 11
1 VKRS

nn
=∈α − ∩  

Therefore, RS ˆˆ 1−  is an extension of V in ( )., σQK  We denote it by ( ).1R  

The construction of ( )1R  implies that ( ( ) )1RJaxr ∈  for all Ka ∈  and 

.+∈ Qr  

Conversely, let R be any extension of V in ( )σ,QK  with     

( )RJaxr ∈  for all Ka ∈  and .+∈ Qr  It follows that all          

expressions of the form k
k

r
r

r
r xaxa +++ "1
11  with +∈ Qir  are        

units in R. Since ( ) .,ˆ 1 RRRR ⊆⊆  For any non-zero                       

element ( ),,1 σ∈=α − QKfg  { }.0,, 0 ≥∈=∈ ∑ ir
r

r rKaxaRgf i
i

i     

Let 2
2

1
1

r
r

r
r xaxaf +=  t

t
r

r xa++"  with trrr <<< "21  and 

l
l

s
s

s
s

s
s xbxbxbg +++= "2

2
1

1  with .21 lsss <<< "  We have the 

equation 
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( ( ) ( ) ( ) ( ) )1
1

12
21

1
1

1
1

1
11 rr

rr
rr

rr
r

r t
t xaarxaarxaf −−−− −σ++−σ+= "  

 ,11
1 fxa r
r=  

and 

( ( ) ( ) ( ) ( ) )1
1

12
21

1
1

1
1

1
11 ss

ss
ss

ss
s

s l
l xbbsxbbsxbg −−−− −σ++−σ+= "  

 ,11
1 gxb s

s=  

with .ˆ, 11 Sgf ∈  Then ( ) ( ) .1
1

1
1

1
1 11

11
fxabsgfg sr

rs
−−−− −σ=  If ,R∈α  then 

011 >− sr  or 11 sr =  and ( ) ( ) ,1
1 1

Vabs lrs ∈−σ −  i.e., ( ).1R∈α  Hence 

( ).1RR =  

Let ( ) { KaVarxaxaaR iri
r

r
r

r ∈∈∈+++= −
− ,,ˆ 001 1

1 Qk
k

"  for 

any }i  and ( ) { KarxaxaS iri
r

r
r

r ∈∈+++= −
− ,1ˆ 1

11 Qk
k

"  for any }.i  

Similarly, we can get that ( ) ( ) ( )1
1
11 ˆˆ

−
−
−− = RSR  is an extension of V in 

( )σ,QK  with the property that ( ( ) )1−∈ RJaxr  for all Ka ∈  and 

.−∈ Qr    

Theorem 3.2 Let σ  be compatible with .V  Then we have the 
following: 

(1) Set { }VarxaR r
r

r ∈≥= ∑ ,0  and { RxaS r
r ∈= ∑ at least one 

( )}.VUar ∈  S is an Ore system in R. 

(2) RS 1−  is an extension of V in ( )., σQK  

Proof. (1) For any Rf ∈  and ,Sg ∈  there is an N∈n  with 

( )]n
nxKgf 1,[,
1

σ∈  by Lemma 2.8. Let { }VaxaR ii
l
i

n
i

n
∈= ∑ =01  and 
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{ VaxaS ii
l
i

n
i

n
∈= ∑ =01  and at least one ( )}.VUai ∈  By Lemma 2.7, 

n
S1  is an Ore system in .1

n
R  Then there exist 

n
Rff 121, ∈  and 

n
Sgg 121, ∈  such that ., 2211 gffggffg ==  Since ., 11 SSRR

nn
⊆⊆  

Hence S is an Ore system in R. 

(2) For any ( )σ∈=α − ,1 QKfg  with { },0\, 00 RgRf ∈∈  there 

exists an N∈n  with ( )]n
nxKgf 1,[,
1

σ∈  by Lemma 2.8. Then 

( )),,( 1
1

n
nxK σ∈α  Since 

nn
RS 11

1−  is a total valuation ring by Lemma 2.7, 

either 
nn

RS 11
1−∈α  or .11

11
nn

RS−− ∈α  We note that .11
11 RSRS
nn

−− ⊆  

Hence RS 1−  is a total valuation ring of ( )., σQK  If ,1 KRS ∩−∈α  then 

.11
1 VKRS

nn
=∈α − ∩  Hence RS 1−  is an extension of V in ( )., σQK    

We denote RS 1−  by ( ).1V  Set 

{ ( )VJarxaA r
r

r ∈∈= ∑+ ,Q  if 0<r  and Var ∈  if },0≥r  

and 

( ) { ( )VJarxaS r
r

r ∈∈= ∑+ ,1 Q  if ( ) VaVUar r ∈∈< ,,0 0  if }.0>r  

Using the result of [7], similar to the proof of Theorem 3.2, we can prove 

that ( )
+
1S  is an Ore system of +A  and ( ) ( ( ) )

+−++ = ASV 1
11  is an extension of 

V in ( )., σQK  Set 

{ ( )VJarxaA r
r

r ∈∈= ∑− ,Q  if 0>r  and Var ∈  if },0≤r  

and 
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( ) { ( )VJarxaS r
r

r ∈∈= ∑− ,1 Q  if ( ) VaVUar r ∈∈> ,,0 0  if }.0<r  

Similarly, we can prove that ( )
−
1S  is an Ore system of −A  and 

( ) ( ( ) ) −−−− = ASV 1
11  is an extension of V in ( )., σQK  The above result can 

be found in [9]. 

Corollary 3.3 ([9]). Let σ  be compatible with V. With the above 

notations, ( )
+
1V  and ( )

−
1V  are extensions of V in ( )., σQK  Furthermore, 

( ) ( )11 VV ⊂+  and ( ) ( ) .11 VV ⊂−  

It follows from the next result that an extension R of V exists in 

( )σ,QK  that contains rx  for all Q∈r  if and only if σ  is compatible 

with V. 

Theorem 3.4. There exists an extension R of V in ( )σ,QK  with 

( )RUxr ∈  for all Q∈r  if and only if σ  is compatible with V. 

Proof. Assume that R is an extension of V in ( )σ,QK  with 

( )RUxr ∈  for all .Q∈r  We have ( ) ( ) rr xarax σ=  for all .Ka ∈  Hence 

( )RUa ∈  if and only if ( )( ) ( ).RUar ∈σ  Therefore, ( )VUa ∈  if and only 

if ( )( ) ( ).VUar ∈σ  It implies that σ  is compatible with .V  Conversely, if 

σ  is compatible with ,V  then RS 1−  is an extension of V in ( )σ,QK  with 

( )RUxr ∈  for all Q∈r  by Theorem 3.2.   

4. Example 

In this section, we will provide a concrete example of ( )σ,QK  that σ  

is compatible with V. 

Example Let ( )Q∈= ryFK r  be the rational function field over a 

field F in indeterminates ( ).Q∈ryr  Let ( )KAut→σ Q:  be a group 
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homomorphism defined by the following; for any ( ) ( ) aarr =σ∈ ,Q  for all 

( )( ) srs yyrFa +=σ∈ ,  for any .sy  Let ( )QZ=G  which is a totally ordered 

abelian group by lexicographical ordering. We define a valuation v of K as 
follows: ( ) 0=av  for any non-zero Fa ∈  and for any non-zero 

homogeneous element ( ) ( ) ( )( ) ,,2212
2

1
1 Zn

s
r

s
r

s
r svrrrryyy n

n ∈=α<<<=α kk""  

where ( )( )Z∈kks  is the element in G such that the jr -component of ( )αv  is 

( )njsj ≤≤1  and other components of it are all zeroes. Let 

mβ++β+β=β "21  be any element in [ ],Q∈ryF r  where iβ  are non-

zero homogeneous elements, we define ( ) ( ){ }.1min mivv i ≤≤β=β  As 

usual, we can extend the map v to { }.0\K  Let V be the valuation ring 

determined by v. Since ( )tσ  is just shifting and for any ,1 K∈αβ−  

n
n
s
r

s
r

s
r yyVyV "2

2
1
1

1 =αβ−  for some .,,,,,,, 2121 ZQ ∈∈ nn sssrrr ""  

Hence σ  is compatible with V. Therefore, ( ) ( ) ( ) ( ),,,, 1111
+

− VVRR  and ( )
−
1V  

are extensions of V in ( )., σQK  
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