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Abstract 

In this paper, we explore the wide-ranging applications of linear algebra in 
solving complex problems across various industries and disciplines. More 

specially, we will focus on the phenomena of solving many complicated 
problems by using it. To perform such an analysis, we will use several critical 
concepts of linear algebra, including the following: matrices, vector spaces, 

difference equations, eigenvalues and eigenvectors, etc. In this sense, some 
practical applications related to computer graphics, geometry, areas, and volumes 
are presented, along with some problems connected to sports and investments. 
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1. Introduction 

Linear algebra is a subject essential to learning since linear models 

based on linear algebra are the base models in statistical learning. The 

origins of linear algebra in the West can be traced to Rene Descartes in 

1637, who developed the idea of coordinates using a geometric method 

that is now known as Cartesian geometry [4].  

The first contributions date back to 1843, when Irish scientist William 

Rowan Hamilton created quaternions and coined the term “vector.” When 

imaginary units jι ˆ,ˆ  and k̂  are added to real numbers, the result is an 

extension known as a quaternion. The term matrix was finally introduced 

in 1848 by English Mathematician James Joseph Sylvester [4]. Important 

ideas in linear algebra include vectors, matrices, systems of linear 

equations, vector spaces, eigenvalues, eigenvectors, and more. Numerous 

fields of study, including probability theory, statistics, engineering, 

economics, and statistics, use matrices. Similar to eigenvalues and 

eigenvectors, which are strong mathematical tools with a wide range of 

engineering applications, vector spaces are widely used in common 

situations, namely wherever functions with values in some fields are 

involved. Engineers can learn a great deal about system behaviour, 

stability analysis, optimization, and problem-solving from these concepts, 

which range from structural analysis and control systems to image 

processing, power systems, and fluid dynamics.  

Additionally, new opportunities for engineering courses have arisen 

as a result of the advancement of technology and digital resources, where 

computers are used to solve mathematically challenging issues, and 

visualizations and simulations play a major role [3]. Additionally, these 

advancements have altered the environment for instruction and learning. 

Increasingly realistic virtual simulations of very complicated engineering 

challenges can be solved thanks to new technology. Innovative techniques 

used at different colleges are characterized by students actively learning 

in real-life activities and practicing self-regulation on personalized 

learning routes. 
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The purpose of this paper is to introduce some interesting real-world 

applications of linear algebra. Here we introduce how linear algebra is 

used for image processing and data transmission. One common 

application of matrices in image processing is image transformation and 

matrices offer an ordered and structured means of representing data, 

which facilitates processing and the extraction of significant insights. 

Here discussed the powerful statistical method of principal component 

analysis (PCA) using linear algebra. Linear algebra has an important 

application in network and graph theory and also for finding the shortest 

path as well as cryptography which we also exercise here. 

2. Results and Discussion 

Linear algebra is a fundamental tool in mathematics and statistics. 

Numerous academic disciplines can benefit from its application, such as 

science, business studies, economics, photoshop, photo editing, and three-

dimensional gaming. It is widely used in the engineering domains. In 

data science and machine learning, it is very helpful. In this chapter, we 

will examine some important real-world uses of linear algebra.  

One of the novel aspects of the instructional approaches employed is 

the application of linear algebra and geometry problems to real-world 

scenarios [9, 10]. A few illustrations are provided. In this section, we will 

discuss application of some problems of linear algebra in real life.  

2.1. Application of linear algebra in image processing 

In a digital image processing system, a pixel is the smallest unit that 

has image control. The quality of the camera determines how many pixels 

are in a photograph. A photograph with more pixels than any other has 

higher quality than any other picture with fewer pixels. It was expressed 

in megapixels by several cameras. A camera with a higher megapixel 

count will generally be of higher quality, which more than others can 

provide us with a clear image [20]. 
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Color bleending produces the coloration of pixels. Three colors are 

based which stand for RGB, or red, green, and blue. This implies that we 

can produce 256256256   distinct colors using the RGB method. For 

computer displays, the RGB scheme is utilized, whereas other colors are 

used for printing.  

A digital image is nothing more than a collection of single-color pixels 

when we zoom in or examine it closely. Which appear to be square.  

Then, a numerical value can be used to represent those colors. Which 

is equivalent to a square image composed of one million pixels where a 

10001000   matrix could be used to represent 1000 on each edge, where 

each pixel’s color values are entered [19].  

Example 2.1.1. We can multiply an image by a constant. Image 

addition and subtraction are also possible. Here is an example for 

multiplication by a constant. By applying MATLAB code, we get the 

image. 

[Program 1]  

  

Figure 2.1.1. Original image. Figure 2.1.2. Multiplication of 

image by 1.5. 

Here all coefficients of the matrix are multiplied by 1.5 and the second 

image is lighter than the original image. Thus, if we multiply an image by 

a constant then this process changes the contrast of the image. 
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2.2. Linear algebra in data science 

Data science is the study of data to obtain significant commercial 
insights. It is a branch of computer engineering, mathematics, statistics, 

and artificial intelligence that analyzes data by taking computation and 

interpretation into account. Here, we go over practical algorithms for 
working with eigenvalues and eigenvectors. We’ll talk about how linear 

algebra is used in principal component analysis (dimension reduction). 

2.2.1. Principal component analysis 

Principal component analysis (PCA) was first introduced by British 
Mathematician Karl Pearson in 1901. This approach is widely used to 

analyze large datasets with many dimensions. By gathering as much data 

as possible, we can improve the data’s ability to explain patterns and 
enable the visualization of multidimensional data. It is a statistical 

method for lowering a data set’s dimensionality. By linear 

transformation, it changes the data into a new coordinate system where 
each variation can be explained by a smaller number of dimensions than 

the original data [8]. 
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Now  21111 13
1 MxB 


      ,2
11

2
11 MzMy    

         112211221121 13
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

  

 ,22 Mz   which is the covariance of first and second variables. Here 

the i-th entry of the diagonal of iiB  is the variance of i-th variable and 

the ij-th entry with ji   is the covariance between the i-th and j-th 

variables. 

2.2.2. Dimension reduction 

The most common method of dimension reduction is PCA. Reducing 

dimensionality is a technique for making a model less complex. Which 

includes feature extraction and feature selection as its two primary 

dimensionality reduction categories. A subset of the original feature is 

chosen through feature selection, and information is extracted from the 

feature to create a new feature subspace. Now we discuss in short how 

PCA performs on data.  

(i) Calculate the mean of the n-dimensional data. 

(ii) Find eigenvalues of the matrix B and also eigenvectors. 

(iii) If a small number of eigenvalues is bigger than others, then the 

dimensionality reduction is possible. Then check which variables are 

much more important than others and which factors have the same or 

opposite sign than the others [8]. 

Example 2.2.2.1. Apply PCA to decrease the dimension from two to 

one given the following data. 

Table 2.2.2.1. Data set for x and y variables 

Feature Ex.1 Ex. 2 Ex. 3 Ex. 4 

x 5 4 8 9 

y 6 2 3 11 
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Step 1: Dataset: There are 2n  features & samples, .4N   

Step 2: Computation mean of variables: 
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4
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4
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Step 5: Derive new dataset:  

,8952.2,1682.2,0708.1
5.56
5.65

131211 
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PC1 − 1.0708 2.1682 2.8952 − 3.9926 

Now we have the reduced dataset with the dimension one. The blue line 

indicates the new axes and the blue dots are the new dataset.  

 

Figure 2.2.2.2. New axes by using PCA. 

2.3. Application of linear algebra in networks, graph theory & 

finding shortest path 

Graphs can represent a lot of things. People and who are their 

friends, connections on a dating app, networks of cities and how they are 

connected to websites and how they link to each other, and so on. There 

are many useful ways to represent a graph [1]. This graph consists of a 

non-empty set of vertices and multiple edges. We can easily understand a 

graph where it is connected and where it is disconnected by network 

matrices. Network matrices show how objects in a system are related to 

another which is more structured and can be easier to read. This matrix 
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is known as an adjacency matrix [16]. An adjacency matrix is a square 

matrix that is used to describe a finite graph in graph theory and 

computer science. The matrix's entries show whether or not pairs of 

vertices in the graph are adjacent. The adjacency matrix in the particular 

situation of a finite simple graph is a matrix with zeros on its diagonal. 

We can understand it by some examples: 

Example 2.3.1. Consider a big city which has four towns named (A, 

B, C, D). Some of the local train information for these towns is shown in 

the graph: 

A train runs from A to B and another train runs from B to A. 

Similarly for A to C and C to A, B to C and C to D, and D to C. Notice that 

there is no train from C to B. By using matrix, we can easily arrange this 

information and understand it: 

  

 

 Figure 2.3.1. A simple directed graph for train 

schedule. 

Where if the train comes from one to another station, then the value is 1, 

otherwise the value is 0.  

Example 2.3.2. Matrix is very useful for telecom networking. Let us 

consider four cities (A, B, C, D). People in these cities use four types of 
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networks. These are Grameenphone (G), Banglalink (B), Robi (R), 

Teletalk (T). 1000 customers are using network G, 200 are using B, and 

100 are using T in city A. In city B the network G, B, R, and T users are 

respectively (500, 0, 300, 100), in C (0, 400, 0, 50), and in D (0, 0, 300, 

200). We can arrange this easily by a graph: 

 

Figure 2.3.2. Weighted graph modelling a telecom networking. 

In matrix form: .
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This short example shows how a matrix facilitates this network which is 

used by billions of customers. All this data is managed by the companies’ 

network software. Their software is arranged through a matrix like this. 

That’s why a matrix is a way of collecting information. It is a compact 

way to collect information. 
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2.3.1. Shortest path 

The shortest path problem, as defined in graph theory, is the task of 

determining a path that minimizes the total weight of all the edges that 

connect two vertices or nodes in a graph. A weighted graph can be used to 

solve this issue. Weighted graphs are graphs in which each edge is 

assigned a number. Computer networks are modeled using weighted 

graphs. Weighted graphs can be used to analyze communication costs, 

computer response times over these lines, and computer distance. This 

graph has both directed and undirected options [16]. 

By using MATLAB, we can easily find the shortest path and draw 

this graph. For this, we have to know about sparse matrix. This matrix is 

a special case of a matrix in which the number of zero elements is much 

higher than the number of non-zero elements.  

For example, suppose we find the shortest path between node-1 to 

node-4 and draw the weighted graph. Which is defined by a 4 by 4 matrix, 

.
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A  This can be directed and also 

undirected. The 2D array representation of the sparse matrix is given in 

the following table. 

Table 2.3.1. Array representation of sparse matrix 

Row 1 1 2 2 3 3 4 

Column 2 4 1 4 2 4 3 

Value 20 50 10 10 60 50 30 

Here is how to use MATLAB to draw the graph and find the shortest 

path: 
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For directed graph:  

[Program 2]  

Then we get the weighted graph as the output and the shortest path 

is from node-1 to node-2 and then node-4 with distance .301020    

For undirected graph:  

[Program 3]  

Then we get the weighted graph as the output and the shortest path 

is node-1, node-2 and node-4 with distance .401030   The graph for 

both cases, 

 

Figure 2.3.1. A directed graph of shortest path. 
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Figure 2.3.2. An undirected graph of shortest path. 

Similarly finding shortest paths is important for solving many 

problems in our daily life. This method is used in different networks. 

Google map direction is the best example of finding the shortest path 
between two points. And obviously, the matrix has made this task easier 

for us. By using matrices, we can easily find the shortest path which is 

very helpful in our daily life.  

2.4. Application of linear algebra in cryptography 

The process of hiding information so that only the recipients can 

decipher and read it is known as cryptography. For thousands of years, 

people have utilized the art of cryptography to encode messages. Today, 
blank cards, computer passwords, and e-commerce all use cryptography. 

The foundation of modern cryptography is mathematical theory. The 

study of encoding and decoding private messages is known as 
cryptography. Here we will introduce the study of cryptography and focus 

on linear algebra-based cipher. 
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Caesar cipher  

One of the most straightforward and well-known encryption 

techniques is the Caesar cipher. This alternative and representational 

cipher substitutes a different letter from an alphabet that occupies a set 

number of positions in the alphabet for each letter in the plaintext of the 

secret message. Julius Caesar employed this technique in his private 

correspondence. This technique bears his name, Caesar code [18]. 

While exchanging information in this way, the person receiving this 

information, will not be able to decipher it. This special form is called 

encryption. The act of extracting the original information from the 

encrypted information is called decryption.  

In Caesar’s cipher system, a number is given along with a text called 

a key. For example, if the value of k is 2 then ABC will be written as CDE [3].  

Plain text: 

A B C

  

D

  

E

  

F

  

G

  

H

  

I  J  K

  

L

  

M

  

N

  

 

O

  

P

  

Q

  

R

  

S

  

T

  

U

  

V

  

W

  

X

  

Y

  

Z

  

Cipher text: 

C

  

D

  

E

  

F

  

G

  

H

  

I  J  K

  

L

  

M

  

N

  

O

  

P

  

Q

  

R

  

S

  

 

T  U  V  W  X  Y  Z  A  B  

 

Using this cipher text “BARISHAL UNIVERSITY” will be “CBSJTIBM 

VOJWFSJUZ” 
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Hill Cipher:  

The Hill Cipher is a linear algebra-based polygraphic substitution 

cipher. Where each letter is represented by a number modulo 26. Here to 

encrypt a message each block of n letters is multiplied by an invertible n 

by n matrix, against modulus 26. Each block is multiplied by the 

encryption matrix's inverse to decode the message. The matrix used for 

encryption is the cipher key and should be chosen randomly from the set 

of invertible n by n matrices (modulo 26). 

A  B  C  D  E  F  G  H  I J K L M 

  1  2  3  4  5  6  7  8 9 10 11 12 

 

N  O  P  Q  R  S  T  U  V W X Y Z 

13  14  15  16  17  18  19  20  21 22 23 24 25 

This computation used in Hill Cipher is based on linear algebra 

techniques. Before encryption and decryption, it is important to recognize 

that the above alphabet is a linear space.  

(i) The alphabet has a zero element. Here the zero element is “A”. The 

numerical value .xAx   

(ii) The alphabet is closed under modulo addition. For two letters x 

and ,, zyxy   where z is the reminder from dividing the sum of x and 

y by the size of the alphabet. 

(iii) The alphabet is closed under modulo scalar multiplication. For 

two letters x and ,, zxyy   where z is the reminder of the product of x 

and y by the size of the alphabet. 
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Encryption with the Hill Cipher:  

First, we know the alphabet is in linear space. We can perform a 

linear transformation on it. Encrypting text using the hill cipher is 

executed by breaking a plaintext into n blocks, where the blocks are 

column vectors, and multiplying these vectors by nn   matrix. Where 

the matrix is invertible. That means the determinant of the matrix 

cannot be zero. Determinants must be relatively prime with the size of 

the alphabet. The encryption matrix must be invertible because its 

inverse is used for the decryption matrix [3]. 

Example 2.4.1.  

As an example, to encrypt the plaintext “BARISHAL UNIVERSITY” 

with .3n  The process is as follows:  

(1) Choose a 33   matrix. The key is “BEAUTYFUL” so, 
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The determinant of 0671 k  and which is relatively prime with 26. 

(2) Split the plain text into the block of size 3 (ignoring space). If the 

plain text's length isn't evenly divisible by 3, add a predetermined 

character to the end of the string until the text's length is divisible by 3. 
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(3) Apply the formula ,pc k  where p is the plain text, c is the cipher 

text, and k  is the key.  

 ,26mod
10
12

1

192
428

1

17
0

1

11205
241920

041


































































 

 ,26mod
9

20

2

477
670

80

7
18

8

11205
241920

041


































































 

 ,26mod
24
13

18

440
689

44

20
11

0

11205
241920

041


































































 

 ,26mod
14
6

19

456
916

45

21
8

13

11205
241920

041


































































 

 ,26mod
12
3

20

558
835

72

18
17

4

11205
241920

041


































































 

 .26mod
8
5

6

684
1097

84

24
19

8

11205
241920

041


































































 

(4) Convert each of the matrices to their alphabetical value:  

.

I

F

G

8

5

6

,

M

D

U

12

3

20

,

O

G

T

14

6

19

,

Y

N

S

24

13

18

,

J

U

C

9

20

2

,

K

M

B

10

12

1





























































































































































































































































 

Cipher text: BMKCUJSNYTGOUDMGFI 
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Decryption with the Hill Cipher: 

Here we are interested in how a party receiving a secret message 

encoded by the Hill Cipher can decode it into the Plaintext:  

(1) Find ,1k  

671
11205
241920

041

det 















d  

       26mod526mod671262626mod671   

  2126mod15 11   dd  








































170305
2114

96815

610305
2411100

9644271

kAdj  (by removing 

negative sign) 

































 

35706405
4223184

2016168315

170305
2114

96815

211k  

  .
1909
16236

14123

26mod















  

(2) Using the formula cp 1 k  

  ,

R

A

B

26mod

17

0

1

199

442

287

10

12

1

1909

16236

14123











































































































 

  ,

H

S

I

26mod

7

18

8

189

616

372

9

20

2

1909

16236

14123










































































































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  ,

U

L

A

26mod

20

11

0

618

791

546

24

13

18

1909

16236

14123











































































































 

  ,

V

I

N

26mod

21

8

13

437

476

325

14

6

19

1909

16236

14123











































































































 

  ,

S

R

E

26mod

18

17

4

408

381

264

12

3

20

1909

16236

14123











































































































 

  .

Y

T

I

26mod

24

19

8

206

276

190

8

5

6

1909

16236

14123











































































































 

So, the original plaintext: BARISHALUNIVERSITY. 

Where the ciphertext has been decrypted into the original plaintext.  

Block Cipher:  

Block ciphers use a cryptographic key and algorithm to encrypt data 

in blocks to create ciphertext. This requires an initialization vector that is 

added to the input plaintext to increase the key space of the cipher. Block 

ciphers only encrypt messages that are the same size as their block length 

[18]. Blocks are encrypted.  

*Electronic Codeback Mode (ECB): This mode is used to 

electronically code messages in plaintext form. It doesn’t add any 

randomness to the key stream. Here for 8 bytes plaintext, we need only 8 

bytes key [18].  
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*Cipher Block Chaining Mode (CBC): This mode is a method of 

encrypting data that ensures that each block of plaintext is combined 

with the previous ciphertext block before being encrypted. Here each 

plain text block is XORed with the previous cipher text block before being 

encrypted with the cipher algorithm. A bitwise XOR iterates through 

binary strings, comparing each significant digit and returning 1 if there is 

an odd number of 1’s between the two and 0 otherwise [18].  

Example 2.4.2. We want to encrypt the plaintext 1p  “BARISHALU” 

and ciphertext string 0c  XYXSCYVTX. Then the integer form is 1p 2 

1 18 9 19 8 1 12 21 and 0c  24 25 24 29 3 25 22 20 24. 

In this cipher, the largest value we need to represent in binary digits 

is 26. Each binary digit represents powers of 2. That means ,2xn   

where .log2 xx   It is clear that only 5 bits to represent 1-26 in binary, 

determining each number representation is a simple greedy algorithm, 

which subtracts each power of 2 from the desired number. If the 

subtraction is greater than or equal to zero then the bit is 1, otherwise 0. 

0c  11000  11001  11000  10011  00011  11001  10110  10100  11000  

XOR 

1p   00010  00001  10010  01001  10011  01000  00001  01100  10101  

Then we get after calculation 

,
1p   11010  11000  01010  11010  10000  10001  10111  11000  01101  

So the decimal digits are, .132423171626102426,
1 p  
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Now take 43   plaintext matrix 











































132423

171626

102426

434

110

433

. 11 pc k   

.
143240274
304049

133216248
















 An inverse function is used to decrypt the text. The 

recipients first apply the inverse matrix key to the cipher text 1c  to get 

1p  back. 

.
132423
171626

102426

143240274
304049

133216248

334
344

101

.,
1

1
1






















































  cp k  

We then perform a bitwise XOR on 0c  and ,
1p  

0c   11000  11001  11000  10011  00011  11001  10110  10100  11000  

XOR 

,
1p   11010  11000  01010  11010  10000  10001  10111  11000  01101  

and get back 

1p   00010  00001  10010  01001  10011  01000  00001  01100  10101  

which is, 2 1 18 9 19 8 1 12 21.  

If two people want to communicate securely then this is easy to do. 

This technique ensures the security of to transfer of private data. It has 

four major goals: confidentiality, integrity, authentication, and non-

repudiation. Collectively these benefits allow companies to conduct 

business in the digital era with complete confidence. 
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3. Conclusion 

In this paper, we have demonstrated the importance of linear algebra 

in the real world by introducing some well-known components by 

exhibiting some major applications. We expressed how linear algebra can 

be used in Image Processing, Cryptography, and also some other parts of 

sciences and showed how they affect our lives. The advantage of our 

representation is finding simple solutions to complex problems through 

linear algebra. The future motive of this project is to solve abstruse 

problems by combining all of the above with more novelties and to 

promote the use of linear algebra in science and our living. 
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